Back to Search
Start Over
Machine learning for accuracy in density functional approximations.
- Source :
-
Journal of computational chemistry [J Comput Chem] 2024 Aug 05; Vol. 45 (21), pp. 1829-1845. Date of Electronic Publication: 2024 Apr 26. - Publication Year :
- 2024
-
Abstract
- Machine learning techniques have found their way into computational chemistry as indispensable tools to accelerate atomistic simulations and materials design. In addition, machine learning approaches hold the potential to boost the predictive power of computationally efficient electronic structure methods, such as density functional theory, to chemical accuracy and to correct for fundamental errors in density functional approaches. Here, recent progress in applying machine learning to improve the accuracy of density functional and related approximations is reviewed. Promises and challenges in devising machine learning models transferable between different chemistries and materials classes are discussed with the help of examples applying promising models to systems far outside their training sets.<br /> (© 2024 Wiley Periodicals LLC.)
Details
- Language :
- English
- ISSN :
- 1096-987X
- Volume :
- 45
- Issue :
- 21
- Database :
- MEDLINE
- Journal :
- Journal of computational chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 38668453
- Full Text :
- https://doi.org/10.1002/jcc.27366