Back to Search
Start Over
Expanding the capabilities of MuGENT for large-scale genetic engineering of the fastest-replicating species, Vibrio natriegens .
- Source :
-
Microbiology spectrum [Microbiol Spectr] 2024 Jun 04; Vol. 12 (6), pp. e0396423. Date of Electronic Publication: 2024 Apr 26. - Publication Year :
- 2024
-
Abstract
- The fastest replicating bacterium Vibrio natriegens is a rising workhorse for molecular and biotechnological research with established tools for efficient genetic manipulation. Here, we expand on the capabilities of multiplex genome editing by natural transformation (MuGENT) by identifying a neutral insertion site and showing how two selectable markers can be swapped at this site for sequential rounds of natural transformation. Second, we demonstrated that MuGENT can be used for complementation by gene insertion at an ectopic chromosomal locus. Additionally, we developed a robust method to cure the competence plasmid required to induce natural transformation. Finally, we demonstrated the ability of MuGENT to create massive deletions; the 280 kb deletion created in this study is one of the largest artificial deletions constructed in a single round of targeted mutagenesis of a bacterium. These methods each advance the genetic potential of V. natriegens and collectively expand upon its utility as an emerging model organism for synthetic biology.<br />Importance: Vibrio natriegens is an emerging model organism for molecular and biotechnological applications. Its fast growth, metabolic versatility, and ease of genetic manipulation provide an ideal platform for synthetic biology. Here, we develop and apply novel methods that expand the genetic capabilities of the V. natriegens model system. Prior studies developed a method to manipulate multiple regions of the chromosome in a single step. Here, we provide new resources that diversify the utility of this method. We also provide a technique to remove the required genetic tools from the cell once the manipulation is performed, thus establishing "clean" derivative cells. Finally, we show the full extent of this technique's capability by generating one of the largest chromosomal deletions reported in the literature. Collectively, these new tools will be beneficial broadly to the Vibrio community and specifically to the advancement of V. natriegens as a model system.<br />Competing Interests: The authors declare no conflict of interest.
Details
- Language :
- English
- ISSN :
- 2165-0497
- Volume :
- 12
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- Microbiology spectrum
- Publication Type :
- Academic Journal
- Accession number :
- 38667341
- Full Text :
- https://doi.org/10.1128/spectrum.03964-23