Back to Search
Start Over
SCPL acyltransferases catalyze the metabolism of chlorogenic acid during purple coneflower seed germination.
- Source :
-
The New phytologist [New Phytol] 2024 Jul; Vol. 243 (1), pp. 229-239. Date of Electronic Publication: 2024 Apr 26. - Publication Year :
- 2024
-
Abstract
- The metabolism of massively accumulated chlorogenic acid is crucial for the successful germination of purple coneflower (Echinacea purpurea (L.) Menoch). A serine carboxypeptidase-like (SCPL) acyltransferase (chicoric acid synthase, CAS) utilizes chlorogenic acid to produce chicoric acid during germination. However, it seems that the generation of chicoric acid lags behind the decrease in chlorogenic acid, suggesting an earlier route of chlorogenic acid metabolism. We discovered another chlorogenic acid metabolic product, 3,5-dicaffeoylquinic acid, which is produced before chicoric acid, filling the lag phase. Then, we identified two additional typical clade IA SCPL acyltransferases, named chlorogenic acid condensing enzymes (CCEs), that catalyze the biosynthesis of 3,5-dicaffeoylquinic acid from chlorogenic acid with different kinetic characteristics. Chlorogenic acid inhibits radicle elongation in a dose-dependent manner, explaining the potential biological role of SCPL acyltransferases-mediated continuous chlorogenic acid metabolism during germination. Both CCE1 and CCE2 are highly conserved among Echinacea species, supporting the observed metabolism of chlorogenic acid to 3,5-dicaffeoylquinic acid in two Echinacea species without chicoric acid accumulation. The discovery of SCPL acyltransferase involved in the biosynthesis of 3,5-dicaffeoylquinic acid suggests convergent evolution. Our research clarifies the metabolism strategy of chlorogenic acid in Echinacea species and provides more insight into plant metabolism.<br /> (© 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation.)
- Subjects :
- Phylogeny
Biocatalysis drug effects
Carboxypeptidases
Germination drug effects
Chlorogenic Acid metabolism
Acyltransferases metabolism
Acyltransferases genetics
Seeds drug effects
Seeds growth & development
Seeds metabolism
Echinacea metabolism
Echinacea drug effects
Plant Proteins metabolism
Plant Proteins genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1469-8137
- Volume :
- 243
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- The New phytologist
- Publication Type :
- Academic Journal
- Accession number :
- 38666323
- Full Text :
- https://doi.org/10.1111/nph.19776