Back to Search Start Over

Investigations on Optical Absorption and the Pyro-phototronic Effect with Selectively Patterned Black Silicon for Advanced Photodetection.

Authors :
Nataraj C
Mohanta K
Badhirappan GP
Source :
ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2024 Apr 25. Date of Electronic Publication: 2024 Apr 25.
Publication Year :
2024
Publisher :
Ahead of Print

Abstract

A novel property existing in the stain-etching technique that eliminates the need for expensive etchant masks in the texturization process of silicon wafers was identified. Through the combination of grayscale lithography and stain-etching methodologies, selective patterning of silicon with AR-P 3510 T, a positive-photoresist mask, was carried out. The etch area ratio was varied in nine different patterns of various feature sizes ranging from 400 to 1500 μm. The optical characteristics of the patterned substrates were determined from diffuse reflectance spectroscopy analysis, and the results were supported with finite-difference time-domain simulations. Complimenting the improvement in optical properties, the electrical losses in microwell-patterned photodetector devices have been reduced with an electro-optic optimum value of the surface enhancement factor, γ. The photodetecting efficiency of a selectively patterned microwell photodetector device exceeded the planar and black silicon photodetector devices with a considerable improvement in the pyro-phototronic effect. This work suggests an alternative for black silicon optoelectronic devices providing a new route to fabricate selectively patterned substrates with an achieved detectivity 16- and 20-fold higher than black and planar silicon photodetector devices, respectively.

Details

Language :
English
ISSN :
1944-8252
Database :
MEDLINE
Journal :
ACS applied materials & interfaces
Publication Type :
Academic Journal
Accession number :
38660705
Full Text :
https://doi.org/10.1021/acsami.3c18632