Back to Search Start Over

Predictive modeling for postoperative delirium in elderly patients with abdominal malignancies using synthetic minority oversampling technique.

Authors :
Hu WJ
Bai G
Wang Y
Hong DM
Jiang JH
Li JX
Hua Y
Wang XY
Chen Y
Source :
World journal of gastrointestinal oncology [World J Gastrointest Oncol] 2024 Apr 15; Vol. 16 (4), pp. 1227-1235.
Publication Year :
2024

Abstract

Background: Postoperative delirium, particularly prevalent in elderly patients after abdominal cancer surgery, presents significant challenges in clinical management.<br />Aim: To develop a synthetic minority oversampling technique (SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients.<br />Methods: In this retrospective cohort study, we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022. The incidence of postoperative delirium was recorded for 7 d post-surgery. Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not. A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium. The SMOTE technique was applied to enhance the model by oversampling the delirium cases. The model's predictive accuracy was then validated.<br />Results: In our study involving 611 elderly patients with abdominal malignant tumors, multivariate logistic regression analysis identified significant risk factors for postoperative delirium. These included the Charlson comorbidity index, American Society of Anesthesiologists classification, history of cerebrovascular disease, surgical duration, perioperative blood transfusion, and postoperative pain score. The incidence rate of postoperative delirium in our study was 22.91%. The original predictive model (P1) exhibited an area under the receiver operating characteristic curve of 0.862. In comparison, the SMOTE-based logistic early warning model (P2), which utilized the SMOTE oversampling algorithm, showed a slightly lower but comparable area under the curve of 0.856, suggesting no significant difference in performance between the two predictive approaches.<br />Conclusion: This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods, effectively addressing data imbalance.<br />Competing Interests: Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.<br /> (©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.)

Details

Language :
English
ISSN :
1948-5204
Volume :
16
Issue :
4
Database :
MEDLINE
Journal :
World journal of gastrointestinal oncology
Publication Type :
Academic Journal
Accession number :
38660665
Full Text :
https://doi.org/10.4251/wjgo.v16.i4.1227