Back to Search Start Over

New role for cardiomyocyte Bmal1 in the regulation of sex-specific heart transcriptomes.

Authors :
Zhang X
Procopio SB
Ding H
Semel MG
Schroder EA
Seward TS
Du P
Wu K
Johnson SR
Prabhat A
Schneider DJ
Stumpf IG
Rozmus ER
Huo Z
Delisle BP
Esser KA
Source :
BioRxiv : the preprint server for biology [bioRxiv] 2024 Apr 21. Date of Electronic Publication: 2024 Apr 21.
Publication Year :
2024

Abstract

It has been well established that cardiovascular diseases exhibit significant differences between sexes in both preclinical models and humans. In addition, there is growing recognition that disrupted circadian rhythms can contribute to the onset and progression of cardiovascular diseases. However little is known about sex differences between the cardiac circadian clock and circadian transcriptomes in mice. Here, we show that the the core clock genes are expressed in common in both sexes but the circadian transcriptome of the mouse heart is very sex-specific. Hearts from female mice expressed significantly more rhythmically expressed genes (REGs) than male hearts and the temporal pattern of REGs was distinctly different between sexes. We next used a cardiomyocyte-specific knock out of the core clock gene, Bmal1 , to investigate its role in sex-specific gene expression in the heart. All sex differences in the circadian transcriptomes were significantly diminished with cardiomyocyte-specific loss of Bmal1 . Surprisingly, loss of cardiomyocyte Bmal1 also resulted in a roughly 8-fold reduction in the number of all the differentially expressed genes between male and female hearts. We conclude that cardiomyocyte-specific Bmal1 , and potentially the core clock mechanism, is vital in conferring sex-specific gene expression in the adult mouse heart.

Details

Language :
English
ISSN :
2692-8205
Database :
MEDLINE
Journal :
BioRxiv : the preprint server for biology
Accession number :
38659967
Full Text :
https://doi.org/10.1101/2024.04.18.590181