Back to Search
Start Over
TRIM28 Fosters Microglia Ferroptosis via Autophagy Modulation to Enhance Neuropathic Pain and Neuroinflammation.
- Source :
-
Molecular neurobiology [Mol Neurobiol] 2024 Nov; Vol. 61 (11), pp. 9459-9477. Date of Electronic Publication: 2024 Apr 22. - Publication Year :
- 2024
-
Abstract
- This study explores the molecular underpinnings of neuropathic pain (NPP) and neuroinflammation, focusing on the role of TRIM28 in the regulation of autophagy and microglia ferroptosis. Leveraging transcriptomic data associated with NPP, we identified TRIM28 as a critical regulator of ferroptosis. Through comprehensive analysis, including Gene Ontology enrichment and protein-protein interaction network assessments, we unveiled GSK3B as a downstream target of TRIM28. Experimental validation confirmed the capacity of TRIM28 to suppress GSK3B expression and attenuate autophagic processes in microglia. We probed the consequences of autophagy and ferroptosis on microglia physiology, iron homeostasis, oxidative stress, and the release of proinflammatory cytokines. In a murine model, we validated the pivotal role of TRIM28 in NPP and neuroinflammation. Our analysis identified 20 ferroptosis regulatory factors associated with NPP, with TRIM28 emerging as a central orchestrator. Experimental evidence affirmed that TRIM28 governs microglial iron homeostasis and cell fate by downregulating GSK3B expression and modulating autophagy. Notably, autophagy was found to influence oxidative stress and proinflammatory cytokine release through the iron metabolism pathway, ultimately fueling neuroinflammation. In vivo experiments provided conclusive evidence of TRIM28-mediated pathways contributing to heightened pain sensitivity in neuroinflammatory states. The effect of TRIM28 on autophagy and microglia ferroptosis drives NPP and neuroinflammation. These findings offer promising avenues for identifying novel therapeutic targets to manage NPP and neuroinflammation.<br /> (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Subjects :
- Animals
Mice
Male
Mice, Inbred C57BL
Oxidative Stress physiology
Iron metabolism
Humans
Glycogen Synthase Kinase 3 beta metabolism
Inflammation pathology
Inflammation metabolism
Cytokines metabolism
Autophagy physiology
Microglia metabolism
Microglia pathology
Ferroptosis physiology
Neuralgia metabolism
Neuralgia pathology
Neuroinflammatory Diseases metabolism
Neuroinflammatory Diseases pathology
Tripartite Motif-Containing Protein 28 metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1559-1182
- Volume :
- 61
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- Molecular neurobiology
- Publication Type :
- Academic Journal
- Accession number :
- 38647647
- Full Text :
- https://doi.org/10.1007/s12035-024-04133-4