Back to Search Start Over

Characterization and optimization of exopolysaccharide extracted from a newly isolated halotolerant cyanobacterium, Acaryochloris Al-Azhar MNE ON864448.1 with antiviral activity.

Authors :
Saad MH
Sidkey NM
El-Fakharany EM
Source :
Microbial cell factories [Microb Cell Fact] 2024 Apr 22; Vol. 23 (1), pp. 117. Date of Electronic Publication: 2024 Apr 22.
Publication Year :
2024

Abstract

Several antiviral agents lost their efficacy due to their severe side effects and virus mutations. This study aimed to identify and optimize the conditions for exopolysaccharide (EPS) production from a newly isolated cyanobacterium, Acaryochloris Al-Azhar MNE ON864448.1, besides exploring its antiviral activity. The cyanobacterial EPS was purified through DEAE-52 cellulose column with a final yield of 83.75%. Different analysis instruments were applied for EPS identification, including Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), and gas chromatographic-mass spectrometry (GC-MS). Plackett-Burman's design demonstrated that working volume (X1), EDTA (X2), inoculum size (X3), CaCl <subscript>2</subscript> (X4), and NaCl (X5) are the most important variables influencing EPS production. Central composite design (CCD) exhibited maximum EPS yield (9.27 mg/mL) at a working volume of 300 mL in a 1 L volumetric flask, EDTA 0.002 g/L, inoculum size 7%, CaCl <subscript>2</subscript> 0.046 g/L, and NaCl 20 g/L were applied. EPS showed potent antiviral activities at different stages of herpes simplex virus type-1 and 2 (HSV-1, HSV-2), adenovirus (ADV) and coxsackievirus (A16) infections. The highest half-maximal inhibitory concentration (IC <subscript>50</subscript> ) (6.477 µg/mL) was recorded during HSV-1 internalization mechanism, while the lowest IC <subscript>50</subscript> (0.005669 µg/mL) was recorded during coxsackievirus neutralization mechanism.<br /> (© 2024. The Author(s).)

Details

Language :
English
ISSN :
1475-2859
Volume :
23
Issue :
1
Database :
MEDLINE
Journal :
Microbial cell factories
Publication Type :
Academic Journal
Accession number :
38644470
Full Text :
https://doi.org/10.1186/s12934-024-02383-4