Back to Search
Start Over
Memory type Bayesian adaptive max-EWMA control chart for weibull processes.
- Source :
-
Scientific reports [Sci Rep] 2024 Apr 18; Vol. 14 (1), pp. 8923. Date of Electronic Publication: 2024 Apr 18. - Publication Year :
- 2024
-
Abstract
- The simultaneous monitoring of both the process mean and dispersion has gained considerable attention in statistical process control, especially when the process follows the normal distribution. This paper introduces a novel Bayesian adaptive maximum exponentially weighted moving average (Max-EWMA) control chart, designed to jointly monitor the mean and dispersion of a non-normal process. This is achieved through the utilization of the inverse response function, particularly suitable for processes conforming to a Weibull distribution. To assess the effectiveness of the proposed control chart, we employed the average run length (ARL) and the standard deviation of run length (SDRL). Subsequently, we compared the performance of our proposed control chart with that of an existing Max-EWMA control chart. Our findings suggest that the proposed control chart demonstrates a higher level of sensitivity in detecting out-of-control signals. Finally, to illustrate the effectiveness of our Bayesian Max-EWMA control chart under various Loss Functions (LFs) for a Weibull process, we present a practical case study focusing on the hard-bake process in the semiconductor manufacturing industry. This case study highlights the adaptability of the chart to different scenarios. Our results provide compelling evidence of the exceptional performance of the suggested control chart in rapidly detecting out-of-control signals during the hard-bake process, thereby significantly contributing to the improvement of process monitoring and quality control.<br /> (© 2024. The Author(s).)
Details
- Language :
- English
- ISSN :
- 2045-2322
- Volume :
- 14
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Scientific reports
- Publication Type :
- Academic Journal
- Accession number :
- 38637650
- Full Text :
- https://doi.org/10.1038/s41598-024-59680-6