Back to Search Start Over

Dual function of LapB (YciM) in regulating Escherichia coli lipopolysaccharide synthesis.

Authors :
Shu S
Tsutsui Y
Nathawat R
Mi W
Source :
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2024 Apr 23; Vol. 121 (17), pp. e2321510121. Date of Electronic Publication: 2024 Apr 18.
Publication Year :
2024

Abstract

Levels of lipopolysaccharide (LPS), an essential glycolipid on the surface of most gram-negative bacteria, are tightly controlled-making LPS synthesis a promising target for developing new antibiotics. Escherichia coli adaptor protein LapB (YciM) plays an important role in regulating LPS synthesis by promoting degradation of LpxC, a deacetylase that catalyzes the first committed step in LPS synthesis. Under conditions where LPS is abundant, LapB recruits LpxC to the AAA+ protease FtsH for degradation. LapB achieves this by simultaneously interacting with FtsH through its transmembrane helix and LpxC through its cytoplasmic domain. Here, we describe a cryo-EM structure of the complex formed between LpxC and the cytoplasmic domain of LapB (LapB <subscript>cyto</subscript> ). The structure reveals how LapB exploits both its tetratricopeptide repeat (TPR) motifs and rubredoxin domain to interact with LpxC. Through both in vitro and in vivo analysis, we show that mutations at the LapB <subscript>cyto</subscript> /LpxC interface prevent LpxC degradation. Unexpectedly, binding to LapB <subscript>cyto</subscript> also inhibits the enzymatic activity of LpxC through allosteric effects reminiscent of LpxC activation by MurA in Pseudomonas aeruginosa. Our findings argue that LapB regulates LPS synthesis in two steps: In the first step, LapB inhibits the activity of LpxC, and in the second step, it commits LpxC to degradation by FtsH.<br />Competing Interests: Competing interests statement:The authors declare no competing interest.

Details

Language :
English
ISSN :
1091-6490
Volume :
121
Issue :
17
Database :
MEDLINE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
38635633
Full Text :
https://doi.org/10.1073/pnas.2321510121