Back to Search Start Over

Identification of an Optimized Clinical Development Candidate from Cilagicin, an Antibiotic That Evades Resistance by Dual Polyprenyl Phosphate Binding.

Authors :
Rosenzweig A
Spotton K
Bhattacharjee A
Morales-Amador A
Brady SF
Source :
ACS infectious diseases [ACS Infect Dis] 2024 May 10; Vol. 10 (5), pp. 1536-1544. Date of Electronic Publication: 2024 Apr 16.
Publication Year :
2024

Abstract

Cilagicin is a dual polyprenyl phosphate binding lipodepsipeptide antibiotic with strong activity against clinically relevant Gram-positive pathogens while evading antibiotic resistance. Cilagicin showed high serum binding that reduced its in vivo efficacy. Cilagicin-BP, which contains a biphenyl moiety in place of the N-terminal myristic acid found on cilagicin, showed reduced serum binding and increased in vivo efficacy but decreased potency against some pathogens. Here, we manipulated the acyl tail and the peptide core of cilagicin to identify an optimized collection of structural features that maintain potent antibiotic activity against a wide range of pathogens in the presence of serum. This led to the identification of the optimized antibiotic dodecacilagicin, which contains an N-terminal dodecanoic acid. Dodecacilagicin exhibits low MICs against clinically relevant pathogens in the presence of serum, retains polyprenyl phosphate binding, and evades resistance development even after long-term antibiotic exposure, making dodecacilagicin an appealing candidate for further therapeutic development.

Details

Language :
English
ISSN :
2373-8227
Volume :
10
Issue :
5
Database :
MEDLINE
Journal :
ACS infectious diseases
Publication Type :
Academic Journal
Accession number :
38626307
Full Text :
https://doi.org/10.1021/acsinfecdis.4c00018