Back to Search Start Over

Acid-catalyzed phenolation of lignin with tea polyphenol: Enhancing uv resistance and oxidation resistance for potential applications.

Authors :
Liu B
Zhang W
Zeng J
Gong N
Ying G
Li P
Wang B
Xu J
Gao W
Chen K
Source :
International journal of biological macromolecules [Int J Biol Macromol] 2024 May; Vol. 267 (Pt 2), pp. 131462. Date of Electronic Publication: 2024 Apr 11.
Publication Year :
2024

Abstract

The rapid development of the industry has led to the destruction of the earth's ozone layer, resulting in an increasingly serious problem of excessive ultraviolet radiation. Exploring effective measures to address these problems has become a hot topic. Lignin shows promise in the design and preparation of anti-ultraviolet products due to its inherent properties. However, it is important to investigate way to enhance the reactivity of lignin and determine its application form in related products. In this study, phenolic reactions with tea polyphenols were conducted through acid-catalyzed conversion, utilizing organic solvent lignin as the primary material. The phenolic hydroxyl content of the original lignin increased significantly by 218.8 %, resulting in notable improvements in UV resistance and oxidation resistance for phenolic lignin. Additionally, micro-nanocapsule emulsions were formed using phenolic lignin particles as surfactants through ultrasonic cavitation with small-molecule sunscreens. A bio-based sunscreen was prepared with phenolated lignin micro-nanocapsules as the active ingredient, achieving an SPF 100.2 and demonstrating excellent stability. The sunscreen also exhibited strong antioxidant properties and impermeability, ensuring user safety. This research offers a current solution for improving the application of lignin in sunscreens while also broadening the potential uses of plant-based materials in advanced functional products.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-0003
Volume :
267
Issue :
Pt 2
Database :
MEDLINE
Journal :
International journal of biological macromolecules
Publication Type :
Academic Journal
Accession number :
38614163
Full Text :
https://doi.org/10.1016/j.ijbiomac.2024.131462