Back to Search Start Over

Results of the 2023 ISBI challenge to reduce GABA-edited MRS acquisition time.

Authors :
Berto RP
Bugler H
Dias G
Oliveira M
Ueda L
Dertkigil S
Costa PDP
Rittner L
Merkofer JP
van de Sande DMJ
Amirrajab S
Drenthen GS
Veta M
Jansen JFA
Breeuwer M
van Sloun RJG
Qayyum A
Rodero C
Niederer S
Souza R
Harris AD
Source :
Magma (New York, N.Y.) [MAGMA] 2024 Jul; Vol. 37 (3), pp. 449-463. Date of Electronic Publication: 2024 Apr 13.
Publication Year :
2024

Abstract

Purpose: Use a conference challenge format to compare machine learning-based gamma-aminobutyric acid (GABA)-edited magnetic resonance spectroscopy (MRS) reconstruction models using one-quarter of the transients typically acquired during a complete scan.<br />Methods: There were three tracks: Track 1: simulated data, Track 2: identical acquisition parameters with in vivo data, and Track 3: different acquisition parameters with in vivo data. The mean squared error, signal-to-noise ratio, linewidth, and a proposed shape score metric were used to quantify model performance. Challenge organizers provided open access to a baseline model, simulated noise-free data, guides for adding synthetic noise, and in vivo data.<br />Results: Three submissions were compared. A covariance matrix convolutional neural network model was most successful for Track 1. A vision transformer model operating on a spectrogram data representation was most successful for Tracks 2 and 3. Deep learning (DL) reconstructions with 80 transients achieved equivalent or better SNR, linewidth and fit error compared to conventional 320 transient reconstructions. However, some DL models optimized linewidth and SNR without actually improving overall spectral quality, indicating a need for more robust metrics.<br />Conclusion: DL-based reconstruction pipelines have the promise to reduce the number of transients required for GABA-edited MRS.<br /> (© 2024. The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB).)

Details

Language :
English
ISSN :
1352-8661
Volume :
37
Issue :
3
Database :
MEDLINE
Journal :
Magma (New York, N.Y.)
Publication Type :
Academic Journal
Accession number :
38613715
Full Text :
https://doi.org/10.1007/s10334-024-01156-9