Back to Search Start Over

Incremental Clustering for Predictive Maintenance in Cryogenics for Radio Astronomy.

Authors :
Cabras A
Ortu P
Pisanu T
Maxia P
Caocci R
Source :
Sensors (Basel, Switzerland) [Sensors (Basel)] 2024 Apr 03; Vol. 24 (7). Date of Electronic Publication: 2024 Apr 03.
Publication Year :
2024

Abstract

In a cooling system for radio astronomy receivers, maintaining cold heads and compressors is essential for consistent performance. This project focuses on monitoring the power currents of the cold head's motor to address potential mechanical deterioration, which could jeopardize the overall functionality of the system. Using Hall effect sensors, a microcontroller-based electronic board, and artificial intelligence, the system detects and predicts anomalies. The model operates using an unsupervised approach based on incremental clustering. Since potential fault scenarios can be multiple and often challenging to simulate or identify during training, the system is initially trained using known operational categories. Over time, the system adapts and evolves by incorporating new data, which can be assigned to existing categories or, in the case of new anomalies, form new categories. This incremental approach enables the system to enhance its performance over the years, adapting to new anomaly scenarios and ensuring precise and reliable monitoring of the cold head's health.

Details

Language :
English
ISSN :
1424-8220
Volume :
24
Issue :
7
Database :
MEDLINE
Journal :
Sensors (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
38610487
Full Text :
https://doi.org/10.3390/s24072278