Back to Search Start Over

A combined nomogram based on radiomics and hematology to predict the pathological complete response of neoadjuvant immunochemotherapy in esophageal squamous cell carcinoma.

Authors :
Yang Y
Yi Y
Wang Z
Li S
Zhang B
Sang Z
Zhang L
Cao Q
Li B
Source :
BMC cancer [BMC Cancer] 2024 Apr 12; Vol. 24 (1), pp. 460. Date of Electronic Publication: 2024 Apr 12.
Publication Year :
2024

Abstract

Background: To predict pathological complete response (pCR) in patients receiving neoadjuvant immunochemotherapy (nICT) for esophageal squamous cell carcinoma (ESCC), we explored the factors that influence pCR after nICT and established a combined nomogram model.<br />Methods: We retrospectively included 164 ESCC patients treated with nICT. The radiomics signature and hematology model were constructed utilizing least absolute shrinkage and selection operator (LASSO) regression, and the radiomics score (radScore) and hematology score (hemScore) were determined for each patient. Using the radScore, hemScore, and independent influencing factors obtained through univariate and multivariate analyses, a combined nomogram was established. The consistency and prediction ability of the nomogram were assessed utilizing calibration curve and the area under the receiver operating factor curve (AUC), and the clinical benefits were assessed utilizing decision curve analysis (DCA).<br />Results: We constructed three predictive models.The AUC values of the radiomics signature and hematology model reached 0.874 (95% CI: 0.819-0.928) and 0.772 (95% CI: 0.699-0.845), respectively. Tumor length, cN stage, the radScore, and the hemScore were found to be independent factors influencing pCR according to univariate and multivariate analyses (Pā€‰<ā€‰0.05). A combined nomogram was constructed from these factors, and AUC reached 0.934 (95% CI: 0.896-0.972). DCA demonstrated that the clinical benefits brought by the nomogram for patients across an extensive range were greater than those of other individual models.<br />Conclusions: By combining CT radiomics, hematological factors, and clinicopathological characteristics before treatment, we developed a nomogram model that effectively predicted whether ESCC patients would achieve pCR after nICT, thus identifying patients who are sensitive to nICT and assisting in clinical treatment decision-making.<br /> (© 2024. The Author(s).)

Details

Language :
English
ISSN :
1471-2407
Volume :
24
Issue :
1
Database :
MEDLINE
Journal :
BMC cancer
Publication Type :
Academic Journal
Accession number :
38609892
Full Text :
https://doi.org/10.1186/s12885-024-12239-0