Back to Search Start Over

Striatal insights: a cellular and molecular perspective on repetitive behaviors in pathology.

Authors :
Burton CL
Longaretti A
Zlatanovic A
Gomes GM
Tonini R
Source :
Frontiers in cellular neuroscience [Front Cell Neurosci] 2024 Mar 27; Vol. 18, pp. 1386715. Date of Electronic Publication: 2024 Mar 27 (Print Publication: 2024).
Publication Year :
2024

Abstract

Animals often behave repetitively and predictably. These repetitive behaviors can have a component that is learned and ingrained as habits, which can be evolutionarily advantageous as they reduce cognitive load and the expenditure of attentional resources. Repetitive behaviors can also be conscious and deliberate, and may occur in the absence of habit formation, typically when they are a feature of normal development in children, or neuropsychiatric disorders. They can be considered pathological when they interfere with social relationships and daily activities. For instance, people affected by obsessive-compulsive disorder, autism spectrum disorder, Huntington's disease and Gilles de la Tourette syndrome can display a wide range of symptoms like compulsive, stereotyped and ritualistic behaviors. The striatum nucleus of the basal ganglia is proposed to act as a master regulator of these repetitive behaviors through its circuit connections with sensorimotor, associative, and limbic areas of the cortex. However, the precise mechanisms within the striatum, detailing its compartmental organization, cellular specificity, and the intricacies of its downstream connections, remain an area of active research. In this review, we summarize evidence across multiple scales, including circuit-level, cellular, and molecular dimensions, to elucidate the striatal mechanisms underpinning repetitive behaviors and offer perspectives on the implicated disorders. We consider the close relationship between behavioral output and transcriptional changes, and thereby structural and circuit alterations, including those occurring through epigenetic processes.<br />Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.<br /> (Copyright © 2024 Burton, Longaretti, Zlatanovic, Gomes and Tonini.)

Details

Language :
English
ISSN :
1662-5102
Volume :
18
Database :
MEDLINE
Journal :
Frontiers in cellular neuroscience
Publication Type :
Academic Journal
Accession number :
38601025
Full Text :
https://doi.org/10.3389/fncel.2024.1386715