Back to Search Start Over

DEAD-Box RNA Helicase Family in Physic Nut ( Jatropha curcas L.): Structural Characterization and Response to Salinity.

Authors :
da Silva RH
Silva MDD
Ferreira-Neto JRC
Souza BB
de Araújo FN
Oliveira EJDS
Benko-Iseppon AM
da Costa AF
Kido ÉA
Source :
Plants (Basel, Switzerland) [Plants (Basel)] 2024 Mar 21; Vol. 13 (6). Date of Electronic Publication: 2024 Mar 21.
Publication Year :
2024

Abstract

Helicases, motor proteins present in both prokaryotes and eukaryotes, play a direct role in various steps of RNA metabolism. Specifically, SF2 RNA helicases, a subset of the DEAD-box family, are essential players in plant developmental processes and responses to biotic and abiotic stresses. Despite this, information on this family in the physic nut ( Jatropha curcas L.) remains limited, spanning from structural patterns to stress responses. We identified 79 genes encoding DEAD-box RNA helicases ( Jc DHX) in the J. curcas genome. These genes were further categorized into three subfamilies: DEAD (42 genes), DEAH (30 genes), and DExH/D (seven genes). Characterization of the encoded proteins revealed a remarkable diversity, with observed patterns in domains, motifs, and exon-intron structures suggesting that the DEAH and DExH/D subfamilies in J. curcas likely contribute to the overall versatility of the family. Three-dimensional modeling of the candidates showed characteristic hallmarks, highlighting the expected functional performance of these enzymes. The promoter regions of the Jc DHX genes revealed potential cis -elements such as Dof-type, BBR-BPC, and AP2-ERF, indicating their potential involvement in the response to abiotic stresses. Analysis of RNA-Seq data from the roots of physic nut accessions exposed to 150 mM of NaCl for 3 h showed most of the Jc DHX candidates repressed. The protein-protein interaction network indicated that Jc DHX proteins occupy central positions, connecting events associated with RNA metabolism. Quantitative PCR analysis validated the expression of nine DEAD-box RNA helicase transcripts, showing significant associations with key components of the stress response, including RNA turnover, ribosome biogenesis, DNA repair, clathrin-mediated vesicular transport, phosphatidyl 3,5-inositol synthesis, and mitochondrial translation. Furthermore, the induced expression of one transcript ( JcDHX44 ) was confirmed, suggesting that it is a potential candidate for future functional analyses to better understand its role in salinity stress tolerance. This study represents the first global report on the DEAD-box family of RNA helicases in physic nuts and displays structural characteristics compatible with their functions, likely serving as a critical component of the plant's response pathways.

Details

Language :
English
ISSN :
2223-7747
Volume :
13
Issue :
6
Database :
MEDLINE
Journal :
Plants (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
38592921
Full Text :
https://doi.org/10.3390/plants13060905