Back to Search Start Over

Association Between Body Composition and Survival in Patients With Gastroesophageal Adenocarcinoma: An Automated Deep Learning Approach.

Authors :
Jung M
Diallo TD
Scheef T
Reisert M
Rau A
Russe MF
Bamberg F
Fichtner-Feigl S
Quante M
Weiss J
Source :
JCO clinical cancer informatics [JCO Clin Cancer Inform] 2024 Apr; Vol. 8, pp. e2300231.
Publication Year :
2024

Abstract

Purpose: Body composition (BC) may play a role in outcome prognostication in patients with gastroesophageal adenocarcinoma (GEAC). Artificial intelligence provides new possibilities to opportunistically quantify BC from computed tomography (CT) scans. We developed a deep learning (DL) model for fully automatic BC quantification on routine staging CTs and determined its prognostic role in a clinical cohort of patients with GEAC.<br />Materials and Methods: We developed and tested a DL model to quantify BC measures defined as subcutaneous and visceral adipose tissue (VAT) and skeletal muscle on routine CT and investigated their prognostic value in a cohort of patients with GEAC using baseline, 3-6-month, and 6-12-month postoperative CTs. Primary outcome was all-cause mortality, and secondary outcome was disease-free survival (DFS). Cox regression assessed the association between (1) BC at baseline and mortality and (2) the decrease in BC between baseline and follow-up scans and mortality/DFS.<br />Results: Model performance was high with Dice coefficients ≥0.94 ± 0.06. Among 299 patients with GEAC (age 63.0 ± 10.7 years; 19.4% female), 140 deaths (47%) occurred over a median follow-up of 31.3 months. At baseline, no BC measure was associated with DFS. Only a substantial decrease in VAT >70% after a 6- to 12-month follow-up was associated with mortality (hazard ratio [HR], 1.99 [95% CI, 1.18 to 3.34]; P = .009) and DFS (HR, 1.73 [95% CI, 1.01 to 2.95]; P = .045) independent of age, sex, BMI, Union for International Cancer Control stage, histologic grading, resection status, neoadjuvant therapy, and time between surgery and follow-up CT.<br />Conclusion: DL enables opportunistic estimation of BC from routine staging CT to quantify prognostic information. In patients with GEAC, only a substantial decrease of VAT 6-12 months postsurgery was an independent predictor for DFS beyond traditional risk factors, which may help to identify individuals at high risk who go otherwise unnoticed.

Details

Language :
English
ISSN :
2473-4276
Volume :
8
Database :
MEDLINE
Journal :
JCO clinical cancer informatics
Publication Type :
Academic Journal
Accession number :
38588476
Full Text :
https://doi.org/10.1200/CCI.23.00231