Back to Search Start Over

High-frequency hearing vulnerability associated with the different supporting potential of Hensen's cells: SMART-Seq2 RNA sequencing.

Authors :
Yu Y
Li Y
Wen C
Yang F
Chen X
Yi W
Deng L
Cheng X
Yu N
Huang L
Source :
Bioscience trends [Biosci Trends] 2024 Jun 06; Vol. 18 (2), pp. 165-175. Date of Electronic Publication: 2024 Apr 05.
Publication Year :
2024

Abstract

Hearing loss is the third most prevalent physical condition affecting communication, well-being, and healthcare costs. Sensorineural hearing loss often occurs first in the high-frequency region (basal turn), then towards the low-frequency region (apical turn). However, the mechanism is still unclear. Supporting cells play a critical role in the maintenance of normal cochlear function. The function and supporting capacity of these cells may be different from different frequency regions. Hensen's cells are one of the unique supporting cell types characterized by lipid droplets (LDs) in the cytoplasm. Here, we investigated the morphological and gene expression differences of Hensen's cells along the cochlear axis. We observed a gradient change in the morphological characteristics of Hensen's cells along the cochlear tonotopic axis, with larger and more abundant LDs observed in apical Hensen's cells. Smart-seq2 RNA-seq revealed differentially expressed genes (DEGs) between apical and basal Hensen's cells that clustered in several pathways, including unsaturated fatty acid biosynthesis, cholesterol metabolism, and fatty acid catabolism, which are associated with different energy storage capacities and metabolic potential. These findings suggest potential differences in lipid metabolism and oxidative energy supply between apical and basal Hensen's cells, which is consistent with the morphological differences of Hensen's cells. We also found differential expression patterns of candidate genes associated with hereditary hearing loss (HHL), noise-induced hearing loss (NIHL), and age-related hearing loss (ARHL). These findings indicate functional heterogeneity of SCs along the cochlear axis, contribute to our understanding of cochlear physiology and provide molecular basis evidence for future studies of hearing loss.

Details

Language :
English
ISSN :
1881-7823
Volume :
18
Issue :
2
Database :
MEDLINE
Journal :
Bioscience trends
Publication Type :
Academic Journal
Accession number :
38583982
Full Text :
https://doi.org/10.5582/bst.2024.01044