Back to Search
Start Over
Genome-Wide Analysis Identifies Nuclear Factor 1C as a Novel Transcription Factor and Potential Therapeutic Target in SCLC.
- Source :
-
Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer [J Thorac Oncol] 2024 Aug; Vol. 19 (8), pp. 1201-1217. Date of Electronic Publication: 2024 Apr 05. - Publication Year :
- 2024
-
Abstract
- Introduction: Recent insights regarding mechanisms mediating stemness, heterogeneity, and metastatic potential of lung cancers have yet to be fully translated to effective regimens for the treatment of these malignancies. This study sought to identify novel targets for lung cancer therapy.<br />Methods: Transcriptomes and DNA methylomes of 14 SCLC and 10 NSCLC lines were compared with normal human small airway epithelial cells (SAECs) and induced pluripotent stem cell (iPSC) clones derived from SAEC. SCLC lines, lung iPSC (Lu-iPSC), and SAEC were further evaluated by DNase I hypersensitive site sequencing (DHS-seq). Changes in chromatin accessibility and depths of transcription factor (TF) footprints were quantified using Bivariate analysis of Genomic Footprint. Standard techniques were used to evaluate growth, tumorigenicity, and changes in transcriptomes and glucose metabolism of SCLC cells after NFIC knockdown and to evaluate NFIC expression in SCLC cells after exposure to BET inhibitors.<br />Results: Considerable commonality of transcriptomes and DNA methylomes was observed between Lu-iPSC and SCLC; however, this analysis was uninformative regarding pathways unique to lung cancer. Linking results of DHS-seq to RNA sequencing enabled identification of networks not previously associated with SCLC. When combined with footprint depth, NFIC, a transcription factor not previously associated with SCLC, had the highest score of occupancy at open chromatin sites. Knockdown of NFIC impaired glucose metabolism, decreased stemness, and inhibited growth of SCLC cells in vitro and in vivo. ChIP-seq analysis identified numerous sites occupied by BRD4 in the NFIC promoter region. Knockdown of BRD4 or treatment with Bromodomain and extra-terminal domain (BET) inhibitors (BETis) markedly reduced NFIC expression in SCLC cells and SCLC PDX models. Approximately 8% of genes down-regulated by BETi treatment were repressed by NFIC knockdown in SCLC, whereas 34% of genes repressed after NFIC knockdown were also down-regulated in SCLC cells after BETi treatment.<br />Conclusions: NFIC is a key TF and possible mediator of transcriptional regulation by BET family proteins in SCLC. Our findings highlight the potential of genome-wide chromatin accessibility analysis for elucidating mechanisms of pulmonary carcinogenesis and identifying novel targets for lung cancer therapy.<br />Competing Interests: Disclosure No authors have conflicts of interest to disclose.<br /> (Copyright © 2024. Published by Elsevier Inc.)
- Subjects :
- Humans
Mice
Animals
NFI Transcription Factors genetics
NFI Transcription Factors metabolism
Genome-Wide Association Study
Transcription Factors genetics
Transcription Factors metabolism
Lung Neoplasms pathology
Lung Neoplasms genetics
Lung Neoplasms drug therapy
Lung Neoplasms metabolism
Small Cell Lung Carcinoma genetics
Small Cell Lung Carcinoma pathology
Small Cell Lung Carcinoma drug therapy
Small Cell Lung Carcinoma metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1556-1380
- Volume :
- 19
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer
- Publication Type :
- Academic Journal
- Accession number :
- 38583771
- Full Text :
- https://doi.org/10.1016/j.jtho.2024.03.023