Back to Search Start Over

Genome-Wide Analysis Identifies Nuclear Factor 1C as a Novel Transcription Factor and Potential Therapeutic Target in SCLC.

Authors :
Shukla V
Wang H
Varticovski L
Baek S
Wang R
Wu X
Echtenkamp F
Villa-Hernandez F
Prothro KP
Gara SK
Zhang MR
Shiffka S
Raziuddin R
Neckers LM
Linehan WM
Chen H
Hager GL
Schrump DS
Source :
Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer [J Thorac Oncol] 2024 Aug; Vol. 19 (8), pp. 1201-1217. Date of Electronic Publication: 2024 Apr 05.
Publication Year :
2024

Abstract

Introduction: Recent insights regarding mechanisms mediating stemness, heterogeneity, and metastatic potential of lung cancers have yet to be fully translated to effective regimens for the treatment of these malignancies. This study sought to identify novel targets for lung cancer therapy.<br />Methods: Transcriptomes and DNA methylomes of 14 SCLC and 10 NSCLC lines were compared with normal human small airway epithelial cells (SAECs) and induced pluripotent stem cell (iPSC) clones derived from SAEC. SCLC lines, lung iPSC (Lu-iPSC), and SAEC were further evaluated by DNase I hypersensitive site sequencing (DHS-seq). Changes in chromatin accessibility and depths of transcription factor (TF) footprints were quantified using Bivariate analysis of Genomic Footprint. Standard techniques were used to evaluate growth, tumorigenicity, and changes in transcriptomes and glucose metabolism of SCLC cells after NFIC knockdown and to evaluate NFIC expression in SCLC cells after exposure to BET inhibitors.<br />Results: Considerable commonality of transcriptomes and DNA methylomes was observed between Lu-iPSC and SCLC; however, this analysis was uninformative regarding pathways unique to lung cancer. Linking results of DHS-seq to RNA sequencing enabled identification of networks not previously associated with SCLC. When combined with footprint depth, NFIC, a transcription factor not previously associated with SCLC, had the highest score of occupancy at open chromatin sites. Knockdown of NFIC impaired glucose metabolism, decreased stemness, and inhibited growth of SCLC cells in vitro and in vivo. ChIP-seq analysis identified numerous sites occupied by BRD4 in the NFIC promoter region. Knockdown of BRD4 or treatment with Bromodomain and extra-terminal domain (BET) inhibitors (BETis) markedly reduced NFIC expression in SCLC cells and SCLC PDX models. Approximately 8% of genes down-regulated by BETi treatment were repressed by NFIC knockdown in SCLC, whereas 34% of genes repressed after NFIC knockdown were also down-regulated in SCLC cells after BETi treatment.<br />Conclusions: NFIC is a key TF and possible mediator of transcriptional regulation by BET family proteins in SCLC. Our findings highlight the potential of genome-wide chromatin accessibility analysis for elucidating mechanisms of pulmonary carcinogenesis and identifying novel targets for lung cancer therapy.<br />Competing Interests: Disclosure No authors have conflicts of interest to disclose.<br /> (Copyright © 2024. Published by Elsevier Inc.)

Details

Language :
English
ISSN :
1556-1380
Volume :
19
Issue :
8
Database :
MEDLINE
Journal :
Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer
Publication Type :
Academic Journal
Accession number :
38583771
Full Text :
https://doi.org/10.1016/j.jtho.2024.03.023