Back to Search Start Over

RNF213 variant and autophagic impairment: A pivotal link to endothelial dysfunction in moyamoya disease.

Authors :
Shin HS
Park GH
Choi ES
Park SY
Kim DS
Chang J
Hong JM
Source :
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism [J Cereb Blood Flow Metab] 2024 Oct; Vol. 44 (10), pp. 1801-1815. Date of Electronic Publication: 2024 Apr 04.
Publication Year :
2024

Abstract

Moyamoya disease (MMD) is closely associated with the Ring Finger Protein 213 ( RNF213 ), a susceptibility gene for MMD. However, its biological function remains unclear. We aimed to elucidate the role of RNF213 in the damage incurred by human endothelial cells under oxygen-glucose deprivation (OGD). We analyzed autophagy in peripheral blood mononuclear cells (PBMCs) derived from patients carrying either RNF213 wildtype (WT) or variant (p.R4810K). Subsequently, human umbilical vein endothelial cells (HUVECs) were transfected with RNF213 WT (HUVEC <superscript>WT</superscript> ) or p.R4810K (HUVEC <superscript>R4810K</superscript> ) and exposed to OGD for 2 h. Immunoblotting was used to analyze autophagy marker proteins, and endothelial function was analyzed by tube formation assay. Autophagic vesicles were observed using transmission electron microscopy. Post-OGD exposure, we administered rapamycin and cilostazol as potential autophagy inducers. The RNF213 variant group during post-OGD exposure (vs. pre-OGD) showed autophagy inhibition, increased protein expression of SQSTM1/p62 ( p <  0.0001) and LC3-II ( p =  0.0039), and impaired endothelial function ( p =  0.0252). HUVEC <superscript>R4810K</superscript> during post-OGD exposure (versus pre-OGD) showed a remarkable increase in autophagic vesicles. Administration of rapamycin and cilostazol notably restored the function of HUVEC <superscript>R4810K</superscript> and autophagy. Our findings support the pivotal role of autophagy impaired by the RNF213 variant in MMD-induced endothelial cell dysfunction.<br />Competing Interests: Declaration of conflicting interestsThe author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Details

Language :
English
ISSN :
1559-7016
Volume :
44
Issue :
10
Database :
MEDLINE
Journal :
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
Publication Type :
Academic Journal
Accession number :
38573771
Full Text :
https://doi.org/10.1177/0271678X241245557