Back to Search
Start Over
Diffusion tensor imaging in anisotropic tissues: application of reduced gradient vector schemes in peripheral nerves.
- Source :
-
European radiology experimental [Eur Radiol Exp] 2024 Apr 02; Vol. 8 (1), pp. 37. Date of Electronic Publication: 2024 Apr 02. - Publication Year :
- 2024
-
Abstract
- Background: In contrast to the brain, fibers within peripheral nerves have distinct monodirectional structure questioning the necessity of complex multidirectional gradient vector schemes for DTI. This proof-of-concept study investigated the diagnostic utility of reduced gradient vector schemes in peripheral nerve DTI.<br />Methods: Three-Tesla magnetic resonance neurography of the tibial nerve using 20-vector DTI (DTI <subscript>20</subscript> ) was performed in 10 healthy volunteers, 12 patients with type 2 diabetes, and 12 age-matched healthy controls. From the full DTI <subscript>20</subscript> dataset, three reduced datasets including only two or three vectors along the x- and/or y- and z-axes were built to calculate major parameters. The influence of nerve angulation and intraneural connective tissue was assessed. The area under the receiver operating characteristics curve (ROC-AUC) was used for analysis.<br />Results: Simplified datasets achieved excellent diagnostic accuracy equal to DTI <subscript>20</subscript> (ROC-AUC 0.847-0.868, p ≤ 0.005), but compared to DTI <subscript>20</subscript> , the reduced models yielded mostly lower absolute values of DTI scalars: median fractional anisotropy (FA) ≤ 0.12; apparent diffusion coefficient (ADC) ≤ 0.25; axial diffusivity ≤ 0.96, radial diffusivity ≤ 0.07). The precision of FA and ADC with the three-vector model was closest to DTI <subscript>20</subscript> . Intraneural connective tissue was negatively correlated with FA and ADC (r ≥ -0.49, p < 0.001). Small deviations of nerve angulation had little effect on FA accuracy.<br />Conclusions: In peripheral nerves, bulk tissue DTI metrics can be approximated with only three predefined gradient vectors along the scanner's main axes, yielding similar diagnostic accuracy as a 20-vector DTI, resulting in substantial scan time reduction.<br />Relevance Statement: DTI bulk tissue parameters of peripheral nerves can be calculated with only three predefined gradient vectors at similar diagnostic performance as a standard DTI but providing a substantial scan time reduction.<br />Key Points: • In peripheral nerves, DTI parameters can be approximated using only three gradient vectors. • The simplified model achieves a similar diagnostic performance as a standard DTI. • The simplified model allows for a significant acceleration of image acquisition. • This can help to introduce multi-b-value DTI techniques into clinical practice.<br /> (© 2024. The Author(s).)
Details
- Language :
- English
- ISSN :
- 2509-9280
- Volume :
- 8
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- European radiology experimental
- Publication Type :
- Academic Journal
- Accession number :
- 38561526
- Full Text :
- https://doi.org/10.1186/s41747-024-00444-2