Back to Search Start Over

Validation of a fully automated deep learning-enabled solution for CCTA atherosclerotic plaque and stenosis quantification in a diverse real-world cohort.

Authors :
Lorenzatti D
Filtz A
Pina P
Scotti A
Schenone AL
Gongora CA
Kwan AC
Cheng VY
Garcia MJ
Berman DS
Slomka PJ
Dey D
Slipczuk L
Source :
Journal of cardiovascular computed tomography [J Cardiovasc Comput Tomogr] 2024 Sep-Oct; Vol. 18 (5), pp. 507-509. Date of Electronic Publication: 2024 Mar 28.
Publication Year :
2024

Abstract

Competing Interests: Declaration of competing interest DL, AF – Supported by institutional grants from Amgen and Philips. DD, DSB, PJS – Software royalties from Cedars-Sinai Medical Center. LS – Institutional grants from Amgen and Philips. Site PI for Ocean(a) trial.

Details

Language :
English
ISSN :
1876-861X
Volume :
18
Issue :
5
Database :
MEDLINE
Journal :
Journal of cardiovascular computed tomography
Publication Type :
Academic Journal
Accession number :
38553402
Full Text :
https://doi.org/10.1016/j.jcct.2024.03.012