Back to Search Start Over

Combined exposure to decabromodiphenyl ether and nano zero-valent iron aggravated oxidative stress and interfered with metabolism in earthworms.

Authors :
Han Y
Ling S
Hu S
Shen G
Zhang H
Zhang W
Source :
The Science of the total environment [Sci Total Environ] 2024 May 20; Vol. 926, pp. 172033. Date of Electronic Publication: 2024 Mar 27.
Publication Year :
2024

Abstract

Decabromodiphenyl ether (BDE-209) is a common brominated flame retardant in electronic waste, and nano zero-valent iron (nZVI) is a new material in the field of environmental remediation. Little is known about how BDE-209 and nZVI combined exposure influences soil organisms. During the 28 days study, we determined the effects of single and combined exposures to BDE-209 and nZVI on the oxidative stress and metabolic response of earthworms (Eisenia fetida). On day 7, compared to CK, malondialdehyde (MDA) content increased in most combined exposure groups. To remove MDA and reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities were induced in most combined exposure groups. On day 28, compared to CK, the activities of SOD and CAT were inhibited, while POD activity was significantly induced, indicating that POD plays an important role in scavenging ROS. Combined exposure to BDE-209 and nZVI significantly affected amino acid biosynthesis and metabolism, purine metabolism, and aminoacyl-tRNA biosynthesis pathways, interfered with energy metabolism, and aggravated oxidative stress in earthworms. These findings provide a basis for assessing the ecological impacts of using nZVI to remediate soils contaminated with BDE-209 from electronic waste.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-1026
Volume :
926
Database :
MEDLINE
Journal :
The Science of the total environment
Publication Type :
Academic Journal
Accession number :
38547968
Full Text :
https://doi.org/10.1016/j.scitotenv.2024.172033