Back to Search
Start Over
eIF4F is a thermo-sensing regulatory node in the translational heat shock response.
- Source :
-
Molecular cell [Mol Cell] 2024 May 02; Vol. 84 (9), pp. 1727-1741.e12. Date of Electronic Publication: 2024 Mar 27. - Publication Year :
- 2024
-
Abstract
- Heat-shocked cells prioritize the translation of heat shock (HS) mRNAs, but the underlying mechanism is unclear. We report that HS in budding yeast induces the disassembly of the eIF4F complex, where eIF4G and eIF4E assemble into translationally arrested mRNA ribonucleoprotein particles (mRNPs) and HS granules (HSGs), whereas eIF4A promotes HS translation. Using in vitro reconstitution biochemistry, we show that a conformational rearrangement of the thermo-sensing eIF4A-binding domain of eIF4G dissociates eIF4A and promotes the assembly with mRNA into HS-mRNPs, which recruit additional translation factors, including Pab1p and eIF4E, to form multi-component condensates. Using extracts and cellular experiments, we demonstrate that HS-mRNPs and condensates repress the translation of associated mRNA and deplete translation factors that are required for housekeeping translation, whereas HS mRNAs can be efficiently translated by eIF4A. We conclude that the eIF4F complex is a thermo-sensing node that regulates translation during HS.<br />Competing Interests: Declaration of interests S.A. is an advisor on the scientific advisory board of Dewpoint Therapeutics.<br /> (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Subjects :
- Eukaryotic Initiation Factor-4E metabolism
Eukaryotic Initiation Factor-4E genetics
Eukaryotic Initiation Factor-4A metabolism
Eukaryotic Initiation Factor-4A genetics
Gene Expression Regulation, Fungal
Protein Binding
RNA, Fungal metabolism
RNA, Fungal genetics
Protein Biosynthesis
Saccharomyces cerevisiae Proteins metabolism
Saccharomyces cerevisiae Proteins genetics
Saccharomyces cerevisiae genetics
Saccharomyces cerevisiae metabolism
Heat-Shock Response genetics
Eukaryotic Initiation Factor-4F metabolism
Eukaryotic Initiation Factor-4F genetics
RNA, Messenger genetics
RNA, Messenger metabolism
Eukaryotic Initiation Factor-4G metabolism
Eukaryotic Initiation Factor-4G genetics
Ribonucleoproteins metabolism
Ribonucleoproteins genetics
Poly(A)-Binding Proteins
Subjects
Details
- Language :
- English
- ISSN :
- 1097-4164
- Volume :
- 84
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- Molecular cell
- Publication Type :
- Academic Journal
- Accession number :
- 38547866
- Full Text :
- https://doi.org/10.1016/j.molcel.2024.02.038