Back to Search
Start Over
Stable n-Type Perylene Derivative Ladder Polymer with Antiambipolarity for Electrically Reconfigurable Organic Logic Gates.
- Source :
-
Advanced materials (Deerfield Beach, Fla.) [Adv Mater] 2024 Aug; Vol. 36 (31), pp. e2308823. Date of Electronic Publication: 2024 Apr 03. - Publication Year :
- 2024
-
Abstract
- Organic electrochemical transistors (OECTs) are one of the promising building blocks to realize next-generation bioelectronics. To date, however, the performance and signal processing capabilities of these devices remain limited by their stability and speed. Herein, the authors demonstrate stable and fast n-type organic electrochemical transistors based on a side-chain-free ladder polymer, poly(benzimidazoanthradiisoquinolinedione). The device demonstrated fast normalized transient speed of 0.56 ± 0.17 ms um <superscript>-2</superscript> and excellent long-term stability in aqueous electrolytes, with no significant drop in its doping current after 50 000 successive doping/dedoping cycles and 2-month storage at ambient conditions. These unique characteristics make this polymer especially suitable for bioelectronics, such as being used as a pull-down channel in a complementary inverter for long-term stable detection of electrophysiological signals. Moreover, the developed device shows a reversible anti-ambipolar behavior, enabling reconfigurable electronics to be realized using a single material. These results go beyond the conventional OECT and demonstrate the potential of OECTs to exhibit dynamically configurable functionalities for next-generation reconfigurable electronics.<br /> (© 2024 Wiley‐VCH GmbH.)
Details
- Language :
- English
- ISSN :
- 1521-4095
- Volume :
- 36
- Issue :
- 31
- Database :
- MEDLINE
- Journal :
- Advanced materials (Deerfield Beach, Fla.)
- Publication Type :
- Academic Journal
- Accession number :
- 38531078
- Full Text :
- https://doi.org/10.1002/adma.202308823