Back to Search Start Over

Machine learning natural language processing for identifying venous thromboembolism: systematic review and meta-analysis.

Authors :
Lam BD
Chrysafi P
Chiasakul T
Khosla H
Karagkouni D
McNichol M
Adamski A
Reyes N
Abe K
Mantha S
Vlachos IS
Zwicker JI
Patell R
Source :
Blood advances [Blood Adv] 2024 Jun 25; Vol. 8 (12), pp. 2991-3000.
Publication Year :
2024

Abstract

Abstract: Venous thromboembolism (VTE) is a leading cause of preventable in-hospital mortality. Monitoring VTE cases is limited by the challenges of manual medical record review and diagnosis code interpretation. Natural language processing (NLP) can automate the process. Rule-based NLP methods are effective but time consuming. Machine learning (ML)-NLP methods present a promising solution. We conducted a systematic review and meta-analysis of studies published before May 2023 that use ML-NLP to identify VTE diagnoses in the electronic health records. Four reviewers screened all manuscripts, excluding studies that only used a rule-based method. A meta-analysis evaluated the pooled performance of each study's best performing model that evaluated for pulmonary embolism and/or deep vein thrombosis. Pooled sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) with confidence interval (CI) were calculated by DerSimonian and Laird method using a random-effects model. Study quality was assessed using an adapted TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis) tool. Thirteen studies were included in the systematic review and 8 had data available for meta-analysis. Pooled sensitivity was 0.931 (95% CI, 0.881-0.962), specificity 0.984 (95% CI, 0.967-0.992), PPV 0.910 (95% CI, 0.865-0.941) and NPV 0.985 (95% CI, 0.977-0.990). All studies met at least 13 of the 21 NLP-modified TRIPOD items, demonstrating fair quality. The highest performing models used vectorization rather than bag-of-words and deep-learning techniques such as convolutional neural networks. There was significant heterogeneity in the studies, and only 4 validated their model on an external data set. Further standardization of ML studies can help progress this novel technology toward real-world implementation.<br /> (© 2024 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.)

Details

Language :
English
ISSN :
2473-9537
Volume :
8
Issue :
12
Database :
MEDLINE
Journal :
Blood advances
Publication Type :
Academic Journal
Accession number :
38522096
Full Text :
https://doi.org/10.1182/bloodadvances.2023012200