Back to Search Start Over

New insights into changes in phosphorus profile at sediment-water interface by microplastics: Role of benthic bioturbation.

Authors :
Song X
Ding J
Zhang Y
Zhu M
Peng Y
Wang Z
Pan G
Zou H
Source :
Journal of hazardous materials [J Hazard Mater] 2024 May 05; Vol. 469, pp. 134047. Date of Electronic Publication: 2024 Mar 15.
Publication Year :
2024

Abstract

Microplastics (MPs) have attracted increasing attention due to their ubiquitous occurrence in freshwater sediments and the detrimental effects on benthic invertebrates. However, a clear understanding of their downstream impacts on ecosystem services is still lacking. This study examines the effects of bio-based polylactic acid (PLA), fuel-based polyethylene terephthalate (PET), and biofilm-covered PET (BPET) MPs on the bioturbator chironomid larvae (Tanypus chinensis), and the influence on phosphorus (P) profiles in microcosms. The changes in biochemical responses and metabolic pathways indicated that MPs disrupted energy synthesis by causing intestinal blockage and oxidative stress in T. chinensis, leading to energy depletion and impaired bioturbation activity. The impairment further resulted in enhanced sedimentary P immobilization. For larval treatments, the internal-P loadings were respectively 11.4%, 8.6%, and 9.0% higher in the PLA, PET, and BPET groups compared to the non-MP control. Furthermore, the influence of bioturbation on P profiles was MP-type dependent. Both BPET and PLA treatments displayed more obvious impacts on P profiles compared to PET due to the changes in MP bioavailability or sediment microenvironment. This study connects individual physiological responses to broader ecosystem services, showing that MPs alter P biogeochemical processes by disrupting the bioturbation activities of chironomid larvae.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-3336
Volume :
469
Database :
MEDLINE
Journal :
Journal of hazardous materials
Publication Type :
Academic Journal
Accession number :
38492392
Full Text :
https://doi.org/10.1016/j.jhazmat.2024.134047