Back to Search Start Over

fNIRS is capable of distinguishing laterality of lower body contractions.

Authors :
MacLennan RJ
Hernandez-Sarabia JA
Reese SM
Shields JE
Smith CM
Stute K
Collyar J
Olmos AA
Danielson TL
MacLennan DL
Pagan JI
Girts RM
Harmon KK
Coker N
Carr JC
Ye X
Perry JW
Stock MS
DeFreitas JM
Source :
Experimental brain research [Exp Brain Res] 2024 May; Vol. 242 (5), pp. 1115-1126. Date of Electronic Publication: 2024 Mar 14.
Publication Year :
2024

Abstract

The use of functional near-infrared spectroscopy (fNIRS) for brain imaging during human movement continues to increase. This technology measures brain activity non-invasively using near-infrared light, is highly portable, and robust to motion artifact. However, the spatial resolution of fNIRS is lower than that of other imaging modalities. It is unclear whether fNIRS has sufficient spatial resolution to differentiate nearby areas of the cortex, such as the leg areas of the motor cortex. Therefore, the purpose of this study was to determine fNIRS' ability to discern laterality of lower body contractions. Activity in the primary motor cortex was recorded in forty participants (mean = 23.4 years, SD = 4.5, female = 23, male = 17) while performing unilateral lower body contractions. Contractions were performed at 30% of maximal force against a handheld dynamometer. These contractions included knee extension, knee flexion, dorsiflexion, and plantar flexion of the left and right legs. fNIRS signals were recorded and stored for offline processing and analysis. Channels of fNIRS data were grouped into regions of interest, with five tolerance conditions ranging from strict to lenient. Four of five tolerance conditions resulted in significant differences in cortical activation between hemispheres. During right leg contractions, the left hemisphere was more active than the right hemisphere. Similarly, during left leg contractions, the right hemisphere was more active than the left hemisphere. These results suggest that fNIRS has sufficient spatial resolution to distinguish laterality of lower body contractions. This makes fNIRS an attractive technology in research and clinical applications in which laterality of brain activity is required during lower body activity.<br /> (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Details

Language :
English
ISSN :
1432-1106
Volume :
242
Issue :
5
Database :
MEDLINE
Journal :
Experimental brain research
Publication Type :
Academic Journal
Accession number :
38483567
Full Text :
https://doi.org/10.1007/s00221-024-06798-8