Back to Search Start Over

Application of back propagation neural network in complex diagnostics and forecasting loss of life of cellulose paper insulation in oil-immersed transformers.

Authors :
Ngwenyama MK
Gitau MN
Source :
Scientific reports [Sci Rep] 2024 Mar 13; Vol. 14 (1), pp. 6080. Date of Electronic Publication: 2024 Mar 13.
Publication Year :
2024

Abstract

Oil-immersed transformers are expensive equipment in the electrical system, and their failure would lead to widespread blackouts and catastrophic economic losses. In this work, an elaborate diagnostic approach is proposed to evaluate twenty-six different transformers in-service to determine their operative status as per the IEC 60599:2022 standard and CIGRE brochure. The approach integrates dissolved gas analysis (DGA), transformer oil integrity analysis, visual inspections, and two Back Propagation Neural Network (BPNN) algorithms to predict the loss of life (LOL) of the transformers through condition monitoring of the cellulose paper. The first BPNN algorithm proposed is based on forecasting the degree of polymerization (DP) using 2-Furaldehyde (2FAL) concentration measured from oil samples using DGA, and the second BPNN algorithm proposed is based on forecasting transformer LOL using the 2FAL and DP data obtained from the first BPNN algorithm. The first algorithm produced a correlation coefficient of 0.970 when the DP was predicted using the 2FAL measured in oil and the second algorithm produced a correlation coefficient of 0.999 when the LOL was predicted using the 2FAL and DP output data obtained from the first algorithm. The results show that the BPNN can be utilized to forecast the DP and LOL of transformers in-service. Lastly, the results are used for hazard analysis and lifespan prediction based on the health index (HI) for each transformer to predict the expected years of service.<br /> (© 2024. The Author(s).)

Details

Language :
English
ISSN :
2045-2322
Volume :
14
Issue :
1
Database :
MEDLINE
Journal :
Scientific reports
Publication Type :
Academic Journal
Accession number :
38480776
Full Text :
https://doi.org/10.1038/s41598-024-56598-x