Back to Search Start Over

On-Chip Reconstitution of Uniformly Shear-Sensing 3D Matrix-embedded Multicellular Blood Microvessel.

Authors :
Vo Q
Carlson KA
Chiknas PM
Brocker CN
DaSilva L
Clark E
Park SK
Ajiboye AS
Wier EM
Benam KH
Source :
Advanced functional materials [Adv Funct Mater] 2024 Mar 04; Vol. 34 (10). Date of Electronic Publication: 2023 Aug 07.
Publication Year :
2024

Abstract

Preclinical human-relevant modeling of organ-specific vasculature offers a unique opportunity to recreate pathophysiological intercellular, tissue-tissue, and cell-matrix interactions for a broad range of applications. Here, we present a reliable, and simply reproducible process for constructing user-controlled long rounded extracellular matrix (ECM)-embedded vascular microlumens on-chip for endothelization and co-culture with stromal cells obtained from human lung. We demonstrate the critical impact of microchannel cross-sectional geometry and length on uniform distribution and magnitude of vascular wall shear stress, which is key when emulating in vivo -observed blood flow biomechanics in health and disease. In addition, we provide an optimization protocol for multicellular culture and functional validation of the system. Moreover, we show the ability to finely tune rheology of the three-dimensional natural matrix surrounding the vascular microchannel to match pathophysiological stiffness. In summary, we provide the scientific community with a matrix-embedded microvasculature on-chip populated with all -primary human-derived pulmonary endothelial cells and fibroblasts to recapitulate and interrogate lung parenchymal biology, physiological responses, vascular biomechanics, and disease biogenesis in vitro . Such a mix-and-match synthetic platform can be feasibly adapted to study blood vessels, matrix, and ECM-embedded cells in other organs and be cellularized with additional stromal cells.

Details

Language :
English
ISSN :
1616-301X
Volume :
34
Issue :
10
Database :
MEDLINE
Journal :
Advanced functional materials
Publication Type :
Academic Journal
Accession number :
38465199
Full Text :
https://doi.org/10.1002/adfm.202304630