Back to Search Start Over

Revealing the grammar of small RNA secretion using interpretable machine learning.

Authors :
Zirak B
Naghipourfar M
Saberi A
Pouyabahar D
Zarezadeh A
Luo L
Fish L
Huh D
Navickas A
Sharifi-Zarchi A
Goodarzi H
Source :
Cell genomics [Cell Genom] 2024 Apr 10; Vol. 4 (4), pp. 100522. Date of Electronic Publication: 2024 Mar 08.
Publication Year :
2024

Abstract

Small non-coding RNAs can be secreted through a variety of mechanisms, including exosomal sorting, in small extracellular vesicles, and within lipoprotein complexes. However, the mechanisms that govern their sorting and secretion are not well understood. Here, we present ExoGRU, a machine learning model that predicts small RNA secretion probabilities from primary RNA sequences. We experimentally validated the performance of this model through ExoGRU-guided mutagenesis and synthetic RNA sequence analysis. Additionally, we used ExoGRU to reveal cis and trans factors that underlie small RNA secretion, including known and novel RNA-binding proteins (RBPs), e.g., YBX1, HNRNPA2B1, and RBM24. We also developed a novel technique called exoCLIP, which reveals the RNA interactome of RBPs within the cell-free space. Together, our results demonstrate the power of machine learning in revealing novel biological mechanisms. In addition to providing deeper insight into small RNA secretion, this knowledge can be leveraged in therapeutic and synthetic biology applications.<br />Competing Interests: Declaration of interests The authors declare no competing interests.<br /> (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
2666-979X
Volume :
4
Issue :
4
Database :
MEDLINE
Journal :
Cell genomics
Publication Type :
Academic Journal
Accession number :
38460515
Full Text :
https://doi.org/10.1016/j.xgen.2024.100522