Back to Search Start Over

Acquired Multidrug Resistance in AML Is Caused by Low Apoptotic Priming in Relapsed Myeloblasts.

Authors :
Olesinski EA
Bhatia KS
Wang C
Pioso MS
Lin XX
Mamdouh AM
Ng SX
Sandhu V
Jasdanwala SS
Yilma B
Bohl S
Ryan JA
Malani D
Luskin MR
Kallioniemi O
Porkka K
Adamia S
Chng WJ
Osato M
Weinstock DM
Garcia JS
Letai A
Bhatt S
Source :
Blood cancer discovery [Blood Cancer Discov] 2024 May 01; Vol. 5 (3), pp. 180-201.
Publication Year :
2024

Abstract

In many cancers, mortality is associated with the emergence of relapse with multidrug resistance (MDR). Thus far, the investigation of cancer relapse mechanisms has largely focused on acquired genetic mutations. Using acute myeloid leukemia (AML) patient-derived xenografts (PDX), we systematically elucidated a basis of MDR and identified drug sensitivity in relapsed AML. We derived pharmacologic sensitivity for 22 AML PDX models using dynamic BH3 profiling (DBP), together with genomics and transcriptomics. Using in vivo acquired resistant PDXs, we found that resistance to unrelated, narrowly targeted agents in distinct PDXs was accompanied by broad resistance to drugs with disparate mechanisms. Moreover, baseline mitochondrial apoptotic priming was consistently reduced regardless of the class of drug-inducing selection. By applying DBP, we identified drugs showing effective in vivo activity in resistant models. This study implies evasion of apoptosis drives drug resistance and demonstrates the feasibility of the DBP approach to identify active drugs for patients with relapsed AML.<br />Significance: Acquired resistance to targeted therapy remains challenging in AML. We found that reduction in mitochondrial priming and common transcriptomic signatures was a conserved mechanism of acquired resistance across different drug classes in vivo. Drugs active in vivo can be identified even in the multidrug resistant state by DBP.<br /> (©2024 American Association for Cancer Research.)

Details

Language :
English
ISSN :
2643-3249
Volume :
5
Issue :
3
Database :
MEDLINE
Journal :
Blood cancer discovery
Publication Type :
Academic Journal
Accession number :
38442309
Full Text :
https://doi.org/10.1158/2643-3230.BCD-24-0001