Back to Search
Start Over
Angiotoxic effects of chlorinated polyfluorinated ether sulfonate, a novel perfluorooctane sulfonate substitute, in vivo and in vitro.
- Source :
-
Journal of hazardous materials [J Hazard Mater] 2024 May 05; Vol. 469, pp. 133919. Date of Electronic Publication: 2024 Feb 29. - Publication Year :
- 2024
-
Abstract
- Chlorinated polyfluorinated ether sulfonate (Cl-PFESA), a substitute for perfluorooctane sulfonate (PFOS), has been widely used in the Chinese electroplating industry under the trade name F-53B. The production and use of F-53B is keep increasing in recent years, consequently causing more emissions into the environment. Thus, there is a growing concern about the adverse effects of F-53B on human health. However, related research is very limited, particularly in terms of its toxicity to the vascular system. In this study, C57BL/6 J mice were exposed to 0.04, 0.2, and 1 mg/kg F-53B for 12 weeks to assess its impact on the vascular system. We found that F-53B exposure caused aortic wall thickening, collagen deposition, and reduced elasticity in mice. In addition, F-53B exposure led to a loss of vascular endothelial integrity and a vascular inflammatory response. Intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were found to be indispensable for this process. Furthermore, RNA sequencing analysis revealed that F-53B can decrease the repair capacity of endothelial cells by inhibiting their proliferation and migration. Collectively, our findings demonstrate that F-53B exposure induces vascular inflammation and loss of endothelial integrity as well as suppresses the repair capacity of endothelial cells, which ultimately results in vascular injury, highlighting the need for a more thorough risk assessment of F-53B to human health.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1873-3336
- Volume :
- 469
- Database :
- MEDLINE
- Journal :
- Journal of hazardous materials
- Publication Type :
- Academic Journal
- Accession number :
- 38432093
- Full Text :
- https://doi.org/10.1016/j.jhazmat.2024.133919