Back to Search
Start Over
In vivo assessment of marine vs bovine origin collagen-based composite scaffolds promoting bone regeneration in a New Zealand rabbit model.
- Source :
-
Biomaterials advances [Biomater Adv] 2024 May; Vol. 159, pp. 213813. Date of Electronic Publication: 2024 Feb 26. - Publication Year :
- 2024
-
Abstract
- The ability of human tissues to self-repair is limited, which motivates the scientific community to explore new and better therapeutic approaches to tissue regeneration. The present manuscript provides a comparative study between a marine-based composite biomaterial, and another composed of well-established counterparts for bone tissue regeneration. Blue shark skin collagen was combined with bioapatite obtained from blue shark's teeth (mColl:BAp), while bovine collagen was combined with synthetic hydroxyapatite (bColl:Ap) to produce 3D composite scaffolds by freeze-drying. Collagens showed similar profiles, while apatite particles differed in their composition, being the marine bioapatite a fluoride-enriched ceramic. The marine-sourced biomaterials presented higher porosities, improved mechanical properties, and slower degradation rates when compared to synthetic apatite-reinforced bovine collagen. The in vivo performance regarding bone tissue regeneration was evaluated in defects created in femoral condyles in New Zealand rabbits twelve weeks post-surgery. Micro-CT results showed that mColl:BAp implanted condyles had a slower degradation and an higher tissue formation (17.9 ± 6.9 %) when compared with bColl:Ap implanted ones (12.9 ± 7.6 %). The histomorphometry analysis provided supporting evidence, confirming the observed trend by quantifying 13.1 ± 7.9 % of new tissue formation for mColl:BAp composites and 10.4 ± 3.2 % for bColl:Ap composites, suggesting the potential use of marine biomaterials for bone regeneration.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 2772-9508
- Volume :
- 159
- Database :
- MEDLINE
- Journal :
- Biomaterials advances
- Publication Type :
- Academic Journal
- Accession number :
- 38428122
- Full Text :
- https://doi.org/10.1016/j.bioadv.2024.213813