Back to Search
Start Over
Physical pretreatment of three biowastes to improve black soldier fly larvae bioconversion efficiency.
- Source :
-
Waste management (New York, N.Y.) [Waste Manag] 2024 Apr 15; Vol. 178, pp. 280-291. Date of Electronic Publication: 2024 Feb 28. - Publication Year :
- 2024
-
Abstract
- Black soldier fly larvae (BSFL, Hermetia illucens (L.)) are recognized for efficient biowaste reduction while yielding valuable proteins and fats for animals. However, lignocellulosic fibers in biowastes are difficult to digest by biowaste and larval digestive tract microorganisms as well as the larvae themselves. This study investigated two biowaste physical pretreatments (thermal, mechanical) for improving BSFL processing of fibrous biowastes. Cow manure, spent grain, and grass clippings were thermally pretreated at 90 °C for three durations (0.5, 1 and 4 h). Contrary to expectations, thermal pretreatment resulted in either no improvement or decreased larval performance on all substrates, regardless of treatment duration. In contrast, mechanical pretreatment of spent grain and grass clippings, involving milling with three screen sizes (0.5, 1 and 2 mm) showed promising results. Specifically, bioconversion rates on 0.5 mm-milled spent grain and grass clippings increased by 0-53 % and 25-44 % dry mass, respectively compared to untreated. Additionally, larval protein conversion increased by 41 % and 23 % on spent grain and grass clippings, respectively. However, mechanical pretreatment did not affect fiber degradation by larval conversion, as hemicellulose decreased by 25 % and 75 % for spent grain and grass clippings, respectively, regardless of particle size. Particle size reduction influenced substrate microbial respiration (CO <subscript>2</subscript> mg/min), with 0.5-mm milled grass clippings exhibiting higher respiration compared to untreated, although this effect was not observed for spent grain. This study highlights mechanical pretreatment's potential in enhancing BSFL bioconversion of fibrous biowastes and the importance of understanding substrate physical properties influencing substrate microorganisms and BSFL.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-2456
- Volume :
- 178
- Database :
- MEDLINE
- Journal :
- Waste management (New York, N.Y.)
- Publication Type :
- Academic Journal
- Accession number :
- 38422681
- Full Text :
- https://doi.org/10.1016/j.wasman.2024.02.012