Back to Search Start Over

Multiplexed Capillary-Flow Driven Immunoassay for Respiratory Illnesses.

Authors :
Link JS
O'Donnell-Sloan J
Curdts S
Geiss BJ
Dandy DS
Henry CS
Source :
Analytical chemistry [Anal Chem] 2024 Mar 12; Vol. 96 (10), pp. 4111-4119. Date of Electronic Publication: 2024 Feb 28.
Publication Year :
2024

Abstract

Multiplexed analysis in medical diagnostics is widely accepted as a more thorough and complete method compared to single-analyte detection. While analytical methods like polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA) exist for multiplexed detection of biomarkers, they remain time-consuming and expensive. Lateral flow assays (LFAs) are an attractive option for point-of-care testing, and examples of multiplexed LFAs exist. However, these devices are limited by spatial resolution of test lines, large sample volume requirements, cross-reactivity, and poor sensitivity. Recent work has developed capillary-flow microfluidic ELISA platforms as a more sensitive alternative to LFAs; however, multiplexed detection on these types of devices has yet to be demonstrated. In the aftermath of the initial SARS-CoV-2 pandemic, the need for rapid, sensitive point-of-care devices has become ever clearer. Moving forward, devices that can distinguish between diseases with similar presenting symptoms would be the ideal home diagnostic. Here, the first example of a multiplexed capillary-flow immunoassay device for the simultaneous detection of multiple biomarkers is reported. From a single sample addition step, the reagents and washing steps required for two simultaneous ELISAs are delivered to spatially separated test strips. Visual results can be obtained in <15 min, and images captured with a smartphone can be analyzed for quantitative data. This device was used to distinguish between and quantify H1N1 hemagglutinin (HA) and SARS-CoV-2 nucleocapsid protein (N-protein). Using this device, analytical detection limits of 840 and 133 pg/mL were obtained for hemagglutinin and nucleocapsid protein, respectively. The presence of one target in the device did not increase the signal on the other test line, indicating no cross-reactivity between the assays. Additionally, simultaneous detection of both N-protein and HA was performed as well as simultaneous detection of N-protein and human C-reactive protein (CRP). Elevated levels of CRP in a patient infected with SARS-CoV-2 have been shown to correlate with more severe outcomes and a greater risk of death as well. To further expand on the simultaneous detection of two biomarkers, CRP and N-protein were detected simultaneously, and the presence of SARS-CoV-2 N-protein did not interfere with the detection of CRP when both targets were present in the sample.

Details

Language :
English
ISSN :
1520-6882
Volume :
96
Issue :
10
Database :
MEDLINE
Journal :
Analytical chemistry
Publication Type :
Academic Journal
Accession number :
38417100
Full Text :
https://doi.org/10.1021/acs.analchem.3c04977