Back to Search
Start Over
Zinc oxide nanoparticles functionalized with cinnamic acid for targeting dental pathogens receptor and modulating apoptotic genes in human oral epidermal carcinoma KB cells.
- Source :
-
Molecular biology reports [Mol Biol Rep] 2024 Feb 24; Vol. 51 (1), pp. 352. Date of Electronic Publication: 2024 Feb 24. - Publication Year :
- 2024
-
Abstract
- Background: Oral diseases are often attributed to dental pathogens such as S. aureus, S. mutans, E. faecalis, and C. albicans. In this research work, a novel approach was employed to combat these pathogens by preparing zinc oxide nanoparticles (ZnO NPs) capped with cinnamic acid (CA) plant compounds.<br />Methods: The synthesized ZnO-CA NPs were characterized using SEM, FTIR, and XRD to validate their composition and structural features. The antioxidant activity of ZnO-CA NPs was confirmed using DPPH and ABTS free radical scavenging assays. The antimicrobial effects of ZnO-CA NPs were validated using a zone of inhibition assay against dental pathogens. Autodock tool was used to identify the interaction of cinnamic acid with dental pathogen receptors.<br />Results: ZnO-CA NPs exhibited potent antioxidant activity in both DPPH and ABTS assays, suggesting their potential as powerful antioxidants. The minimal inhibitory concentration of ZnO-CA NPs against dental pathogens was found 25 µg/mL, indicating their effective antimicrobial properties. Further, ZnO-CA NPs showed better binding affinity and amino acid interaction with dental pathogen receptors. Also, the ZnO-CA NPs exhibited dose-dependent (5 µg/mL, 15 µg/mL, 25 µg/mL, and 50 µg/mL) anticancer activity against Human Oral Epidermal Carcinoma KB cells. The mechanism of action of apoptotic activity of ZnO-CA NPs on the KB cells was identified through the upregulation of BCL-2, BAX, and P53 genes.<br />Conclusions: This research establishes the potential utility of ZnO-CA NPs as a promising candidate for dental applications. The potent antioxidant, anticancer, and effective antimicrobial properties of ZnO-CA NPs make them a valuable option for combating dental pathogens.<br /> (© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
Details
- Language :
- English
- ISSN :
- 1573-4978
- Volume :
- 51
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Molecular biology reports
- Publication Type :
- Academic Journal
- Accession number :
- 38400866
- Full Text :
- https://doi.org/10.1007/s11033-024-09289-9