Back to Search Start Over

Modulatory effects of quercetin on histological changes, biochemical and oxidative stress of rat placenta induced by inhalation exposure to crude oil vapor.

Authors :
Khazaeel K
Hussein HA
Ranjbar R
Tabandeh MR
Alahmed JAS
Source :
Reproductive toxicology (Elmsford, N.Y.) [Reprod Toxicol] 2024 Apr; Vol. 125, pp. 108560. Date of Electronic Publication: 2024 Feb 21.
Publication Year :
2024

Abstract

The inhalation exposure to crude oil vapor (COV) has been shown to have adverse effects on the placenta and fetal development. The modulatory effects of quercetin (QUE) as a natural phenolic compound with antioxidant properties are promising for the protection of placental structure. This study aimed to investigate the modulatory role of QUE in mitigating histopathological damage, oxidative stress, and biochemical alteration in the placenta of COV-exposed pregnant rats. Forty-eight pregnant rats were divided into eight groups (days 15 and 20) as follows: 1-2) Control groups, 3-4) COV groups, 5-6) COV+QUE groups, and 7-8) QUE-treated groups (50 mg/kg). The inhalation method was used to expose pregnant rats to COV, and QUE was administered orally. On the 15th and 20th days of gestation, placental tissue was analyzed using PAS and H&E staining and immunohistochemistry. The expression of the caspase-3 gene and oxidative stress biomarkers including TAC, CAT, MDA, GPx, and SOD were investigated in the placental tissue. The COV significantly decreased the weight, diameter, and thickness of the placenta as well as the thickness of the junctional zone and labyrinth and the number of trophoblast giant cells in 15- and 20-day-old placentas (P<0.05). Also, COV significantly increased placental expression of caspase-3 and the oxidative stress biomarkers (P<0.05). The administration of QUE along with exposure to COV reduced morphometric and histological alteration, oxidative stress, and caspase-3 expression (P<0.05). Our findings indicated that QUE in COV-exposed pregnant rats can prevent placental histopathological alternations by increasing the activity of the antioxidant system.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024. Published by Elsevier Inc.)

Details

Language :
English
ISSN :
1873-1708
Volume :
125
Database :
MEDLINE
Journal :
Reproductive toxicology (Elmsford, N.Y.)
Publication Type :
Academic Journal
Accession number :
38387710
Full Text :
https://doi.org/10.1016/j.reprotox.2024.108560