Cite
Deep learning models incorporating endogenous factors beyond DNA sequences improve the prediction accuracy of base editing outcomes.
MLA
Yuan, Tanglong, et al. “Deep Learning Models Incorporating Endogenous Factors beyond DNA Sequences Improve the Prediction Accuracy of Base Editing Outcomes.” Cell Discovery, vol. 10, no. 1, Feb. 2024, p. 20. EBSCOhost, https://doi.org/10.1038/s41421-023-00624-1.
APA
Yuan, T., Wu, L., Li, S., Zheng, J., Li, N., Xiao, X., Zhang, H., Fei, T., Xie, L., Zuo, Z., Li, D., Huang, P., Feng, H., Cao, Y., Yan, N., Wei, X., Shi, L., Sun, Y., Wei, W., … Zuo, E. (2024). Deep learning models incorporating endogenous factors beyond DNA sequences improve the prediction accuracy of base editing outcomes. Cell Discovery, 10(1), 20. https://doi.org/10.1038/s41421-023-00624-1
Chicago
Yuan, Tanglong, Leilei Wu, Shiyan Li, Jitan Zheng, Nana Li, Xiao Xiao, Haihang Zhang, et al. 2024. “Deep Learning Models Incorporating Endogenous Factors beyond DNA Sequences Improve the Prediction Accuracy of Base Editing Outcomes.” Cell Discovery 10 (1): 20. doi:10.1038/s41421-023-00624-1.