Back to Search Start Over

Effect of iron nanoparticles on chromium adsorption in aqueous solution using magnetic biochar: A site energy distribution analysis.

Authors :
Zhang N
Reguyal F
Sarmah AK
Source :
Environmental pollution (Barking, Essex : 1987) [Environ Pollut] 2024 Apr 01; Vol. 346, pp. 123593. Date of Electronic Publication: 2024 Feb 15.
Publication Year :
2024

Abstract

The effects of adding green-synthesized magnetic iron-containing nanoparticles (GSMFe) onto biochar in aqueous solution for the adsorptive removal of hexavalent chromium [Cr(VI)] were investigated in this study. Nanocomposites, denoted as green synthesis magnetic biochar (GSMB), were created using a green synthesis technique with white tea residue to introduce GSMFe into biochar. Six adsorbents, varying in GSMFe content, were tested for their effectiveness in eliminating Cr(VI), a globally significant hazardous heavy metal. The results demonstrated that incorporating GSMFe into biochar led to significant improvements in adsorption capacity and saturation magnetization. With an increasing amount of GSMFe, the maximum adsorption capacity increased from 2.47 mg/g (EWTWB) to 9.11 mg/g (GSMB4). The highest saturation magnetization was achieved at 13.4 Am <superscript>2</superscript> /kg at GSMB4. Similarly, surface areas rose up to 72.9 m <superscript>2</superscript> /g at GSMB3 but declined thereafter due to GSMFe aggregation and pore blockage. Sorption behavior for Cr(VI) was assessed using five isotherm models, with the Redlich-Peterson model showing the best fit. The analysis of approximate site energy distribution (SED) indicates that the incorporation of GSMFe enhances the frequency of the entire range of sorption energy sites, while the biochar matrix contributes to a slight increase in medium sorption energy sites within the GSMFe. Among the GSMBs, the difference were more pronounced at low-energy sites than at high-energy sites. At higher energy sites (27,500-40,000 J/mol), sorption site frequencies remained similar, regardless of GSMFe content and associated physicochemical properties. For sorption energy site values exceeding 17,500 J/mol (Cr(VI) concentration below 50 mg/L), GSMB2 is regarded as a more practical choice due to its relatively large area under the frequency distribution curve and commendable cost-effectiveness.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)

Details

Language :
English
ISSN :
1873-6424
Volume :
346
Database :
MEDLINE
Journal :
Environmental pollution (Barking, Essex : 1987)
Publication Type :
Academic Journal
Accession number :
38367688
Full Text :
https://doi.org/10.1016/j.envpol.2024.123593