Back to Search
Start Over
Effect of temperature on actin filament corkscrewing driven by nonprocessive myosin IC.
- Source :
-
Biochemical and biophysical research communications [Biochem Biophys Res Commun] 2024 Apr 09; Vol. 703, pp. 149597. Date of Electronic Publication: 2024 Feb 08. - Publication Year :
- 2024
-
Abstract
- Myosin family proteins are ATP-driven, actin filament-based motor proteins that generate force along actin filaments. In in vitro actin filament gliding assays, certain myosins generate rotation of gliding actin filaments around their long axes. In this study, we assessed the effects of temperature on the corkscrewing motion of actin filaments, including factors like gliding and rotational velocities and corkscrewing pitch. The corkscrewing motion was driven by a nonprocessive, full-length single-headed Drosophila myosin IC attached to an antibody adsorbed onto a cover glass. We performed an in vitro actin filament corkscrewing assay at temperatures ranging from 25 °C to 35 °C. We found that the gliding and rotational velocities and the pitch of corkscrewing actin filaments generated by myosin IC molecules increased with increasing temperature. Since the pitch is determined by dividing the gliding velocity by the rotational velocity, an increase in the pitch indicates that the gliding velocity increased faster than the rotational velocity with increasing temperature. These results suggest that temperature has distinct effects on the gliding and rotational forces produced by myosin IC, with implications for interpreting the temperature effect on torque-generation mechanisms driven by myosins on actin filaments at physiological temperatures.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier Inc. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1090-2104
- Volume :
- 703
- Database :
- MEDLINE
- Journal :
- Biochemical and biophysical research communications
- Publication Type :
- Academic Journal
- Accession number :
- 38367512
- Full Text :
- https://doi.org/10.1016/j.bbrc.2024.149597