Back to Search Start Over

Anaerobic hexadecane degradation by a thermophilic Hadarchaeon from Guaymas Basin.

Authors :
Benito Merino D
Lipp JS
Borrel G
Boetius A
Wegener G
Source :
The ISME journal [ISME J] 2024 Jan 08; Vol. 18 (1).
Publication Year :
2024

Abstract

Hadarchaeota inhabit subsurface and hydrothermally heated environments, but previous to this study, they had not been cultured. Based on metagenome-assembled genomes, most Hadarchaeota are heterotrophs that grow on sugars and amino acids, or oxidize carbon monoxide or reduce nitrite to ammonium. A few other metagenome-assembled genomes encode alkyl-coenzyme M reductases (Acrs), β-oxidation, and Wood-Ljungdahl pathways, pointing toward multicarbon alkane metabolism. To identify the organisms involved in thermophilic oil degradation, we established anaerobic sulfate-reducing hexadecane-degrading cultures from hydrothermally heated sediments of the Guaymas Basin. Cultures at 70°C were enriched in one Hadarchaeon that we propose as Candidatus Cerberiarchaeum oleivorans. Genomic and chemical analyses indicate that Ca. C. oleivorans uses an Acr to activate hexadecane to hexadecyl-coenzyme M. A β-oxidation pathway and a tetrahydromethanopterin methyl branch Wood-Ljungdahl (mWL) pathway allow the complete oxidation of hexadecane to CO2. Our results suggest a syntrophic lifestyle with sulfate reducers, as Ca. C. oleivorans lacks a sulfate respiration pathway. Comparative genomics show that Acr, mWL, and β-oxidation are restricted to one family of Hadarchaeota, which we propose as Ca. Cerberiarchaeaceae. Phylogenetic analyses further indicate that the mWL pathway is basal to all Hadarchaeota. By contrast, the carbon monoxide dehydrogenase/acetyl-coenzyme A synthase complex in Ca. Cerberiarchaeaceae was horizontally acquired from Bathyarchaeia. The Acr and β-oxidation genes of Ca. Cerberiarchaeaceae are highly similar to those of other alkane-oxidizing archaea such as Ca. Methanoliparia and Ca. Helarchaeales. Our results support the use of Acrs in the degradation of petroleum alkanes and suggest a role of Hadarchaeota in oil-rich environments.<br /> (© The Author(s) 2024. Published by Oxford University Press on behalf of the International Society for Microbial Ecology.)

Details

Language :
English
ISSN :
1751-7370
Volume :
18
Issue :
1
Database :
MEDLINE
Journal :
The ISME journal
Publication Type :
Academic Journal
Accession number :
38365230
Full Text :
https://doi.org/10.1093/ismejo/wrad004