Back to Search Start Over

Detection and dietary risk of per- and polyfluoroalkyl substances in shellfish products from the coasts of Bohai Sea and South China Sea.

Authors :
Wu L
Qiu J
Li A
Ji Y
Yan G
Meng F
Source :
Chemosphere [Chemosphere] 2024 Mar; Vol. 352, pp. 141424. Date of Electronic Publication: 2024 Feb 10.
Publication Year :
2024

Abstract

Artificial per- and polyfluoroalkyl substances (PFASs) are widely distributed in the environment and are potentially harmful to human health. This study assessed the matrix effect of different shellfish on LC-MS analysis and the recoveries of PFASs in purified extracts purified by adding ENVI-Carb graphitized carbon black. Total 76 samples were collected from coastal cities of the Bohai Sea and South China Sea in China. Results showed that the signal response of perfluorocarboxylic acid increased with the length of fluorocarbon chains. ENVI-Carb can mitigate the shellfish matrix effects for analysis of PFASs. Ten PFASs components were detected in shellfish samples at concentrations ranging from 1.3 to 8.5 ng/g wet weight. The PFOA and PFHxS were the dominant components, and PFOA, PFTrDA and PFNA were detected at high rates of 58-93%. The highest levels of ∑PFASs were accumulated in clams, while the lowest levels were found in mussels. The dietary risk assessment indicated that PFASs potentially threaten human health via consumption of clam products in the Bohai Sea region. This study will improve the understanding of the contamination status and the dietary risk of PFASs in shellfish products along the coasts of Bohai Sea and South China Sea in China.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1879-1298
Volume :
352
Database :
MEDLINE
Journal :
Chemosphere
Publication Type :
Academic Journal
Accession number :
38346518
Full Text :
https://doi.org/10.1016/j.chemosphere.2024.141424