Back to Search Start Over

Development and validation of a federated learning framework for detection of subphenotypes of multisystem inflammatory syndrome in children.

Authors :
Jing N
Liu X
Wu Q
Rao S
Mejias A
Maltenfort M
Schuchard J
Lorman V
Razzaghi H
Webb R
Zhou C
Jhaveri R
Lee GM
Pajor NM
Thacker D
Charles Bailey L
Forrest CB
Chen Y
Source :
MedRxiv : the preprint server for health sciences [medRxiv] 2024 Jan 27. Date of Electronic Publication: 2024 Jan 27.
Publication Year :
2024

Abstract

Background: Multisystem inflammatory syndrome in children (MIS-C) is a severe post-acute sequela of SARS-CoV-2 infection. The highly diverse clinical features of MIS-C necessities characterizing its features by subphenotypes for improved recognition and treatment. However, jointly identifying subphenotypes in multi-site settings can be challenging. We propose a distributed multi-site latent class analysis (dMLCA) approach to jointly learn MIS-C subphenotypes using data across multiple institutions.<br />Methods: We used data from the electronic health records (EHR) systems across nine U.S. children's hospitals. Among the 3,549,894 patients, we extracted 864 patients < 21 years of age who had received a diagnosis of MIS-C during an inpatient stay or up to one day before admission. Using MIS-C conditions, laboratory results, and procedure information as input features for the patients, we applied our dMLCA algorithm and identified three MIS-C subphenotypes. As validation, we characterized and compared more granular features across subphenotypes. To evaluate the specificity of the identified subphenotypes, we further compared them with the general subphenotypes identified in the COVID-19 infected patients.<br />Findings: Subphenotype 1 (46.1%) represents patients with a mild manifestation of MIS-C not requiring intensive care, with minimal cardiac involvement. Subphenotype 2 (25.3%) is associated with a high risk of shock, cardiac and renal involvement, and an intermediate risk of respiratory symptoms. Subphenotype 3 (28.6%) represents patients requiring intensive care, with a high risk of shock and cardiac involvement, accompanied by a high risk of >4 organ system being impacted. Importantly, for hospital-specific clinical decision-making, our algorithm also revealed a substantial heterogeneity in relative proportions of these three subtypes across hospitals. Properly accounting for such heterogeneity can lead to accurate characterization of the subphenotypes at the patient-level.<br />Interpretation: Our identified three MIS-C subphenotypes have profound implications for personalized treatment strategies, potentially influencing clinical outcomes. Further, the proposed algorithm facilitates federated subphenotyping while accounting for the heterogeneity across hospitals.<br />Competing Interests: Declaration of interests Dr. Mejias reports funding from Janssen, Merck for research support, and Janssen, Merck and Sanofi-Pasteur for Advisory Board participation; Dr. Rao reports prior grant support from GSK and Biofire. Dr. Chen receives consulting support from GSK. Dr. Jhaveri is a consultant for AstraZeneca, Seqirus and Dynavax, and receives an editorial stipend from Elsevier. All other authors have no conflicts of interest to disclose.

Details

Language :
English
Database :
MEDLINE
Journal :
MedRxiv : the preprint server for health sciences
Publication Type :
Academic Journal
Accession number :
38343837
Full Text :
https://doi.org/10.1101/2024.01.26.24301827