Back to Search Start Over

R-Mixup: Riemannian Mixup for Biological Networks.

Authors :
Kan X
Li Z
Cui H
Yu Y
Xu R
Yu S
Zhang Z
Guo Y
Yang C
Source :
KDD : proceedings. International Conference on Knowledge Discovery & Data Mining [KDD] 2023 Aug; Vol. 2023, pp. 1073-1085. Date of Electronic Publication: 2023 Aug 04.
Publication Year :
2023

Abstract

Biological networks are commonly used in biomedical and healthcare domains to effectively model the structure of complex biological systems with interactions linking biological entities. However, due to their characteristics of high dimensionality and low sample size, directly applying deep learning models on biological networks usually faces severe overfitting. In this work, we propose R-Mixup, a Mixup-based data augmentation technique that suits the symmetric positive definite (SPD) property of adjacency matrices from biological networks with optimized training efficiency. The interpolation process in R-Mixup leverages the log-Euclidean distance metrics from the Riemannian manifold, effectively addressing the swelling effect and arbitrarily incorrect label issues of vanilla Mixup. We demonstrate the effectiveness of R-Mixup with five real-world biological network datasets on both regression and classification tasks. Besides, we derive a commonly ignored necessary condition for identifying the SPD matrices of biological networks and empirically study its influence on the model performance. The code implementation can be found in Appendix E.

Details

Language :
English
ISSN :
2154-817X
Volume :
2023
Database :
MEDLINE
Journal :
KDD : proceedings. International Conference on Knowledge Discovery & Data Mining
Publication Type :
Academic Journal
Accession number :
38343707
Full Text :
https://doi.org/10.1145/3580305.3599483