Back to Search Start Over

Robust unfolding of MeV x-ray spectra from filter stack spectrometer data.

Authors :
Wong CS
Strehlow J
Broughton DP
Luedtke SV
Huang CK
Bogale A
Fitzgarrald R
Nedbailo R
Schmidt JL
Schmidt TR
Twardowski J
Van Pelt A
Alvarez MA
Junghans A
Mix LT
Reinovsky RE
Rusby DR
Wang Z
Wolfe B
Albright BJ
Batha SH
Palaniyappan S
Source :
The Review of scientific instruments [Rev Sci Instrum] 2024 Feb 01; Vol. 95 (2).
Publication Year :
2024

Abstract

We present an inversion method capable of robustly unfolding MeV x-ray spectra from filter stack spectrometer (FSS) data without requiring an a priori specification of a spectral shape or arbitrary termination of the algorithm. Our inversion method is based upon the perturbative minimization (PM) algorithm, which has previously been shown to be capable of unfolding x-ray transmission data, albeit for a limited regime in which the x-ray mass attenuation coefficient of the filter material increases monotonically with x-ray energy. Our inversion method improves upon the PM algorithm through regular smoothing of the candidate spectrum and by adding stochasticity to the search. With these additions, the inversion method does not require a physics model for an initial guess, fitting, or user-selected termination of the search. Instead, the only assumption made by the inversion method is that the x-ray spectrum should be near a smooth curve. Testing with synthetic data shows that the inversion method can successfully recover the primary large-scale features of MeV x-ray spectra, including the number of x-rays in energy bins of several-MeV widths to within 10%. Fine-scale features, however, are more difficult to recover accurately. Examples of unfolding experimental FSS data obtained at the Texas Petawatt Laser Facility and the OMEGA EP laser facility are also presented.<br /> (© 2024 Author(s). Published under an exclusive license by AIP Publishing.)

Details

Language :
English
ISSN :
1089-7623
Volume :
95
Issue :
2
Database :
MEDLINE
Journal :
The Review of scientific instruments
Publication Type :
Academic Journal
Accession number :
38341719
Full Text :
https://doi.org/10.1063/5.0190679