Back to Search Start Over

Wnt/β-catenin-driven EMT regulation in human cancers.

Authors :
Xue W
Yang L
Chen C
Ashrafizadeh M
Tian Y
Sun R
Source :
Cellular and molecular life sciences : CMLS [Cell Mol Life Sci] 2024 Feb 09; Vol. 81 (1), pp. 79. Date of Electronic Publication: 2024 Feb 09.
Publication Year :
2024

Abstract

Metastasis accounts for 90% of cancer-related deaths among the patients. The transformation of epithelial cells into mesenchymal cells with molecular alterations can occur during epithelial-mesenchymal transition (EMT). The EMT mechanism accelerates the cancer metastasis and drug resistance ability in human cancers. Among the different regulators of EMT, Wnt/β-catenin axis has been emerged as a versatile modulator. Wnt is in active form in physiological condition due to the function of GSK-3β that destructs β-catenin, while ligand-receptor interaction impairs GSK-3β function to increase β-catenin stability and promote its nuclear transfer. Regarding the oncogenic function of Wnt/β-catenin, its upregulation occurs in human cancers and it can accelerate EMT-mediated metastasis and drug resistance. The stimulation of Wnt by binding Wnt ligands into Frizzled receptors can enhance β-catenin accumulation in cytoplasm that stimulates EMT and related genes upon nuclear translocation. Wnt/β-catenin/EMT axis has been implicated in augmenting metastasis of both solid and hematological tumors. The Wnt/EMT-mediated cancer metastasis promotes the malignant behavior of tumor cells, causing therapy resistance. The Wnt/β-catenin/EMT axis can be modulated by upstream mediators in which non-coding RNAs are main regulators. Moreover, pharmacological intervention, mainly using phytochemicals, suppresses Wnt/EMT axis in metastasis suppression.<br /> (© 2024. The Author(s).)

Details

Language :
English
ISSN :
1420-9071
Volume :
81
Issue :
1
Database :
MEDLINE
Journal :
Cellular and molecular life sciences : CMLS
Publication Type :
Academic Journal
Accession number :
38334836
Full Text :
https://doi.org/10.1007/s00018-023-05099-7