Back to Search Start Over

Identification and RNAi-based function analysis of trehalase family genes in Frankliniella occidentalis (Pergande).

Authors :
Zheng X
Yuan J
Qian K
Tang Y
Wang J
Zhang Y
Feng J
Cao H
Xu B
Zhang Y
Liang P
Wu Q
Source :
Pest management science [Pest Manag Sci] 2024 Jun; Vol. 80 (6), pp. 2839-2850. Date of Electronic Publication: 2024 Feb 07.
Publication Year :
2024

Abstract

Background: Insects utilize trehalases (TREs) to regulate energy metabolism and chitin biosynthesis, which are essential for their growth, development, and reproduction. TREs can therefore be used as potential targets for future insecticide development. However, the roles of TREs in Frankliniella occidentalis (Pergande), a serious widespread agricultural pest, remain unclear.<br />Results: Three TRE genes were identified in F. occidentalis and cloned, and their functions were then investigated via feeding RNA interference (RNAi) and virus-induced gene silencing (VIGS) assays. The results showed that silencing FoTRE1-1 or FoTRE1-2 significantly decreased expression levels of FoGFAT, FoPGM, FoUAP, and FoCHS, which are members of the chitin biosynthesis pathway. Silencing FoTRE1-1 or FoTRE2 significantly down-regulated FoPFK and FoPK, which are members of the energy metabolism pathway. These changes resulted in 2-fold decreases in glucose and glycogen content, 2-fold increases in trehalose content, and 1.5- to 2.0-fold decreases in chitinase activity. Furthermore, knocking down FoTRE1-1 or FoTRE1-2 resulted in deformed nymphs and pupae as a result of hindered molting. The VIGS assay for the three FoTREs revealed that FoTRE1-1 or FoTRE2 caused shortened ovarioles, and reduced egg-laying and hatching rates.<br />Conclusion: The results suggest that FoTRE1-1 and FoTRE1-2 play important roles in the growth and development of F. occidentalis, while FoTRE1-1 and FoTRE2 are essential for its reproduction. These three genes could be candidate targets for RNAi-based management and control of this destructive agricultural pest. © 2024 Society of Chemical Industry.<br /> (© 2024 Society of Chemical Industry.)

Details

Language :
English
ISSN :
1526-4998
Volume :
80
Issue :
6
Database :
MEDLINE
Journal :
Pest management science
Publication Type :
Academic Journal
Accession number :
38323792
Full Text :
https://doi.org/10.1002/ps.7992