Cite
Forecasting disease trajectories in critical illness: comparison of probabilistic dynamic systems to static models to predict patient status in the intensive care unit.
MLA
Duggal, Abhijit, et al. “Forecasting Disease Trajectories in Critical Illness: Comparison of Probabilistic Dynamic Systems to Static Models to Predict Patient Status in the Intensive Care Unit.” BMJ Open, vol. 14, no. 2, Feb. 2024, p. e079243. EBSCOhost, https://doi.org/10.1136/bmjopen-2023-079243.
APA
Duggal, A., Scheraga, R., Sacha, G. L., Wang, X., Huang, S., Krishnan, S., Siuba, M. T., Torbic, H., Dugar, S., Mucha, S., Veith, J., Mireles-Cabodevila, E., Bauer, S. R., Kethireddy, S., Vachharajani, V., & Dalton, J. E. (2024). Forecasting disease trajectories in critical illness: comparison of probabilistic dynamic systems to static models to predict patient status in the intensive care unit. BMJ Open, 14(2), e079243. https://doi.org/10.1136/bmjopen-2023-079243
Chicago
Duggal, Abhijit, Rachel Scheraga, Gretchen L Sacha, Xiaofeng Wang, Shuaqui Huang, Sudhir Krishnan, Matthew T Siuba, et al. 2024. “Forecasting Disease Trajectories in Critical Illness: Comparison of Probabilistic Dynamic Systems to Static Models to Predict Patient Status in the Intensive Care Unit.” BMJ Open 14 (2): e079243. doi:10.1136/bmjopen-2023-079243.